
Interactively Exploring
API Changes and Versioning Consistency

Souhaila Serbout
Software Institute

USI Lugano, Switzerland
souhaila.serbout@usi.ch

Diana Carolina Muñoz Hurtado
Software Institute

USI Lugano, Switzerland
carolina.munoz@usi.ch

Cesare Pautasso
Software Institute

USI Lugano, Switzerland
c.pautasso@ieee.org

Abstract—Application Programming Interfaces (APIs) evolve
over time. As they change, they are expected to be versioned
based on how changes might affect their clients. In this paper, we
present two novel visualizations specifically designed to represent
all structural changes and the level of adherence to semantic
versioning practices over time. They can also serve for charac-
terizing and comparing the evolution history of different Web
APIs. The API VERSION CLOCK helps to visualize the sequence
of API changes over time and highlight inconsistencies between
major, minor, or patch version changes and the corresponding
introduced breaking or non-breaking changes applied to the
API. The API CHANGES overview aggregates all changes to
an OpenAPI (OAS) description, highlighting the unstable vs.
the stable elements of the API over its entire history. Both
visualizations can be automatically created using the APICTURE,
a command-line and web-based tool that analyzes the histories
of git code repositories containing OAS descriptions, extracting
the necessary data for generating visualizations and computing
metrics related to API evolution and versioning. The visualiza-
tions have been successfully applied to classify, compare, and
interactively explore the multi-year evolution history of APIs with
up to hundreds of individual commits.

Video URL: https://youtu.be/WtFm6VvKi20
Index Terms—Web API Evolution, Semantic Versioning,

Change Visualization, Sunburst Chart

I. INTRODUCTION

The evolution of Application Programming Interfaces
(APIs) is a dynamic process that requires careful moni-
toring and analysis [17, 27]. As APIs undergo continuous
updates [20], it becomes essential to understand [9] and con-
trol [32] the changes that occur over time to ensure seamless
integration [51], maintain backward compatibility [24], track
the progress of development efforts [14], and assess how their
quality and performance evolves over time [8, 15].

In this paper, we use the sunburst visualization towards
understanding the evolution of Web APIs, specifically con-
cerning tracking the co-evolution of API structures and their
versioning metadata. The main goal is to characterize and
compare how different Web APIs evolve over large periods
of time, in order to visually identify different API evolution
patterns [22, 31, 46]. We introduce visualizations designed
to distinguish which API elements have changed often, how
such changes impact clients [18, 29, 49], and whether API

This work was supported by the SNF with the API-ACE project number
184692.

developers consistently update versioning metadata to control
client expectations about the impact of such changes [25]. The
interactive visualizations and their scalability have been tested
by using it to explore a large collection of 3, 271 API change
histories mined from open source GitHub repositories. In this
paper we include a small sample, showing a rich diversity of
Web API evolution histories reflected in our visualizations.

More in detail, the API VERSION CLOCK visualization
shows when each API change happened, what is their im-
pact on clients (e.g., classifying breaking vs. non-breaking
changes), and their relationship with the API versioning
metadata. The goal is to help API developers reflect on
the pace of their API evolution and remind them to bump
the versioning metadata to consistently reflect the impact of
changes on their API clients. The API CHANGES visualization
complements it by precisely representing which elements
of an OpenAPI (OAS) description [5] have changed. The
visualization can be applied both to study individual diffs, but
also cumulatively over sets of changes up to the entire API
history. The visualization highlights the unstable elements of
an API description by showing how they have changed during
a defined timeframe.

The visualization is supported by APICTURE, a CLI tool
that offers the convenience of generating visualizations directly
from git repositories that already contain an OAS specification.
The tool can be embedded into DevOps build pipelines [11] to
generate updated visualizations at every commit so that API
developers can effortlessly track and understand the evolution
of their Web APIs.

This paper makes the following contributions:

1) the API VERSION CLOCK visualization classifies all
changes based on their impact on clients and captures them in
chronological order while putting them in relationships with
the different API versions.

2) the API CHANGES visualization provides a precise lo-
calization and analysis of modifications within the API de-
scription structure. This visualization aids in understanding the
stability of specific API elements and fine-grained evolution
patterns of the API design.

3) the integration of API CHANGES with API VERSION
CLOCK to provide a holistic view of the API’s evolution
journey, supporting the analysis of versioning practices and

1

https://orcid.org/0000-0002-8144-2606
https://orcid.org/0000-0002-4769-3444
https://orcid.org/0000-0002-2748-9665
https://github.com/souhailaS/APIcture

2020

A
pr

8
1.

0.
2

F
irs

t C
om

m
it

1.
0.

2
1.

0.
3

ap
i v

er
si

on
 m

od
ifi

ed

16

18
:1

4:
43

1.
0.

3
A

P
I t

ag
s

m
od

ifi
ed

pa
th

 a
dd

ed

1.
0.

3

Jun

1.2.0

5

1.2.0

path added

17:17:00
1.2.0

req property removed

Jul

1.2.1
api version modified

6 00:37:57 1.3.0
api version modified

summary of GET modified1.3.1 api version modified
1.3.1

1.3.2
api version modified

1.3.21.3.3

api version modified

A
ug

22 15:44:06

2.0.0

api version m
odified

API tags m
odified

path added

16:04:31
2.0.0

path added

16
:3

4:
56

2.
0.

0
pa

th
 a

dd
ed

2.
0.

0

2.
0.

0

pa
th

 a
dd

ed
2.

0.
0

Sep

17
2.0.02.0.0

18

2.0.0
2.0.0

2.0.0

1.3.3

1.3.3 Oct

1.3.3

path added
1.3.3

Nov

30

1.3.3

1.3.3

2021

Jan

1.3.4

28

18:52:39

1.3.5

req property rem
oved

api version m
odified

1.3.4

api version m
odified

1.3.4

pa
th

s

GET

/c
on

ta
ct

/s
en

d
P

O
S

T

operations

GET

responses

404

info

version

tags

cs
v

pa
th

s

GET

op
er

at
ion

s

GET

re
sp

on
se

s

40
4

infoversion

ta
gs

cs
v

pa
th

s

/contact
operations

G
ET

params

query

type

value

lim
it

su
m

m
ar

y

/c
on

ta
ct

/s
en

d

op
er

at
io

ns
PO

ST
re

qu
es

tB
od

y
co

nt
en

t
sc

he
m

a
pr

op
er

tie
s

en
tit

yI
ds

co
ntactI

ds

GET

responses

404

/contact/send
POST

in
fo

ve
rs

io
n

csv

tags

unimplemented

de
ve

lo
pe

r
de

sc
rip

tio
npaths

/contact

operations

GET
params

query
type

valuelimit

POST
requestBody
content

schema
properties

404

G
E

T

inf
ove

rsi
on

1.0.3

1.2.0

2.0.0

pa
th

s

/roles

/c
on

ta
ct

/s
en

d
op

er
at

io
ns

PO
ST

re
qu

es
tB

od
y

co
nt

en
t

sc
he

m
a

pr
op

er
tie

s

en
tit

yI
ds

co
nt

ac
tId

s

GET

params

query

GET

tagscsv

description

infove
rsi

on

pa
th

s

/roles

/c
on

ta
ct

op
er

at
io

ns
G

ET
pa

ra
m

s
qu

er
y

GET
operations

requestBody

content

schema

properties

tagscsv

description

infoversion

1.3.0

1.3.3

1.3.4

Fig. 1. API VERSION CLOCK (center) and API CHANGES until a given version of the Bmore Responsive API. Legend explained in Figures 2 and 4.

the localization of breaking and non-breaking changes on the
API structure and data model.

4) a small gallery of API evolution visualizations, derived
from real-world APIs that test the scalability of the visualiza-
tion to increasingly larger histories (both in terms of versions
and commits) and exhibit a variety of API evolution patterns.

5) the APICTURE tool, which automates the process of
generating both visualizations, providing API developers and
stakeholders with an interactive means to analyze, visualize
and reflect on their API evolution and versioning strategies.

The rest of this paper is structured as follows: In Section II
we present an API example which we use to demonstrate the
visualization use cases. In Sections III and IV we present
API VERSION CLOCK and API CHANGES. In Section V
we include a gallery of selected real-world API evolution

examples and explain insights gained from their visualizations,
then we discuss in Section VI the limitations of the proposed
visualizations and areas or improvements. Finally in Sections
VII, VIII and IX we present related work, draw some conclu-
sions and outline our future research agenda.

II. USE CASE SCENARIOS AND EXAMPLE API

In this section we use a real-world API to introduce and
explain the design of the two visualizations and how they
are generated by leveraging the API’s git historical record of
changes. The Bmore Responsive API [2] is an emergency re-
sponse and contact management API designed for monitoring
and coordinating emergency responses to critical scenarios.
The API history includes a total of 49 commits spanning
from the first commit on April 6, 2020 to the last commit
on February 28, 2022. Throughout its 693-day-long history,

2

https://zenodo.org/record/8253474
https://github.com/CodeForBaltimore/Bmore-Responsive.git

we found 13 distinct versions of the API (from 1.0.2 to
2.0.0, later reverted back to 1.3.4).

Developers are interested in reflecting on the history of the
API to answer the following questions [14, 17, 32]:

• Q1: Did we correctly and consistently follow a semantic
versioning [6] strategy?

• Q2: How often did we revert the API to a previous
version?

• Q3: Did we follow a regular API maintenance and update
cycle over time?

• Q4: Did we always ensure backwards compatibility of
the introduced changes?

• Q5: Which are the stable and the unstable parts of the
API structure and data model?

• Q6: Can we detect if our API followed a unique evolution
path compared to other ones?

The interactive visualizations introduced in this paper are
intended to help both API developers and developers of API
clients to answer such questions.

In particular, the API VERSION CLOCK visualization uses
the sunburst plot to provide a compact chronological view of
the flow of changes over time. With it, developers can observe
the progression of API versions. On the other hand, the API
CHANGES visualization uses the sunburst hierarchy to offer a
detailed representation of the accumulated changes that have
occurred within a specific time frame. This visualization aids
in localizing the specific areas of the API structure where the
changes have occurred. Figure 1 exemplifies this integration,
demonstrating how and when changes flow through specific
time points in the history of the Bmore Responsive API.
With the assistance of the API CHANGES visualization, it
becomes apparent which parts of the API have been affected
by these changes, enabling a more granular analysis of the
API’s evolution.

Both visualizations represent the evolution of an API from
a different and complementary perspective. By default they
display the entire API history, aggregating all changes into
a single plot. If API designers are interested to observe
which change happened when they can use the API VERSION
CLOCK to select a specific commit so that the corresponding
API CHANGES can show what API elements changed since
the previous commit. Likewise, they can select to view all
changes leading up to a certain version of the API, or all
changes that happened between two different releases. As
mentioned above, each API modification represented in API
CHANGES can be contextualized along the time dimension
thanks to the API VERSION CLOCK, e.g., by highlighting the
commit in which they occur.

III. API VERSION CLOCK VISUALIZATION

A. Visualization goal

This visualization serves as an evolutionary clock, providing
a visual representation of the different types of changes that
occur during a specific timeframe in an API’s history. As
depicted in Figure 2, in the Time ring – the fourth one from

2020

A
pr

8

1.
0.

2
F

irs
t C

om
m

it
1.

0.
2

1.
0.

3
ap

i v
er

si
on

 m
od

ifi
ed

16

18
:1

4:
43

1.
0.

3
A

P
I t

ag
s

m
od

ifi
ed

pa
th

 a
dd

ed

1.
0.

3

Jun

1.2.0

5

1.2.0

path added

17:17:00
1.2.0

req property removed

Jul

1.2.1
api version modified

6

0:37:57 1.3.0
api version modified

summary of GET modified1.3.1 api version modified
1.3.1

1.3.2
api version modified

1.3.21.3.3

api version modified

A
ug

22 15:44:06

2.0.0

api version m
odified

API tags m
odified

path added

16:04:31
2.0.0

path added

16
:3

4:
56

2.
0.

0
pa

th
 a

dd
ed

2.
0.

0

2.
0.

0

pa
th

 a
dd

ed
2.

0.
0

Sep

17

2.0.02.0.0

18

2.0.0
2.0.0

2.0.0
1.3.3

1.3.3 Oct

1.3.3

path added
1.3.3

Nov

30

1.3.3

1.3.3

2021

Jan

1.3.4

28

18:52:39

1.3.5

req property rem
oved

api version m
odified

1.3.4

api version m
odified

1.3.4

Year

X
.Y

.Z
F

irs
t C

om
m

it
1.

0.
2

1.
0.

3
1.

0.
3

1.
0.

3

1.2.0

5

1.2.0

minor version upgrade

1.2.0
breaking change

Jul

1.2.1
6

1.3.0

1.3.1
1.3.1

1.3.21.3.21.3.3

Month

Day H
H

:M
M

:SS

2.0.0

api version m
odified

API tags m
odified

path added

2.0.0

Time

Version ID

API Change Description

2.0.0
1.3.3

1.3.3

1.3.3

2021

Jan

1.3.4

28

18:52:39

1.3.5

1.3.4
1.3.4

patch version upgrade

major version upgrade

V
e

rs
io

n
 C

olors

no version upgrade

non-breaking change

metadata change

unclassified change

version reverted

V
ersion

C
hange Colors

Fig. 2. API VERSION CLOCK Design visualizing the Bmore Responsive API

the center – each version upgrade is assigned a unique color,
allowing for a clear depiction of the progression of version
identifiers and the corresponding types of changes – shown
in the outer rings – throughout the entire history of the API.
Notably, for APIs that adopt the semantic versioning format,
the visualization incorporates, in the Version ID ring, color
coding to differentiate between major, minor, and patch-level
upgrades.

The primary objective of API VERSION CLOCK is to assess
the congruence between version identifier updates and the
relative significance of breaking and non-breaking changes
introduced in the API over time. Developers can leverage
this visualization to gain insights into the adopted versioning
strategy for a specific API and evaluate its adherence to the
principles of semantic versioning.

In the case of the Bmore Responsive API, according to
the API VERSION CLOCK visualization in Figure 2, semantic
versioning is not properly adopted. Breaking changes were
introduced however this was not reflected by the version
identifiers. Moreover, the version identifier has been reverted
twice during the API’s history.

B. Building API VERSION CLOCK

As illustrated in Figure 3, the construction of the visu-
alization involves retrieving all the git commits that made
modifications to the OAS description of the API. We then
compute the differences between each pair of consecutive
commits, allowing us to identify the specific changes made
during each commit. For extracting the changes we rely on
oasdiff [4], an open source command-line tool and Go package
that compares two OAS descriptions.

3

https://github.com/CodeForBaltimore/Bmore-Responsive.git

Model generators

- hash: db5bb8d605a8e22eff54c8234c2713afd23b6505

 diff: "no diff"

 commit_date: '2020-04-08T00:42:57.000Z'

- hash: d42b004e837bc9e8f28febd9b604d9218bfb0a26
 diff:
 info:
 version:
 from: 1.0.2
 to: 1.0.3
 commit_date: '2020-04-08T16:18:07.000Z'

- hash: 9d719055cd97311138c622ec941813743d739d57

 diff:

 paths:

 added:

 - "/csv/{model_type}"

 endpoints:

 added:

 - method: GET

 path: "/csv/{model_type}"

 tags:

 added:

 - csv

 commit_date: '2020-04-16T16:14:43.000Z'

∆0

∆1

∆2

name: root

value: 3

children:

 - name: paths

 children:

 - name: added

 children:

 - name: "/csv/{model_type}"

 value: 1

 children:

 - name: GET

 value: 1

- name: info

 children:

 - name: version

 value: 1

- name: tags

 children:

 - name: added

 value: 1

 children:

 - name: csv

 value: 1

1

2 3

co
m

m
it

1
co

m
m

it
2

co
m

m
it

0

Git History Extracted diffs Extracted tree data structure Built portion of the visualizationx

All ∆s

oasdiff

diff analyser

Extract breaking changes

Extract non-
breaking changes

Breaking changes

Non breaking changes

Unclassified changes

Visualisation
tree model

Styles

M2M transformer

Versioning analyser

Echarts

Internal component
External component

 ...

- hash: 9d719055cd97311138c622ec941813743d739d57

 diff:

 paths:

 added:

 - "/csv/{model_type}"

 endpoints:

 added:

 - method: GET

 path: "/csv/{model_type}"

 tags:

 added:

 - csv

 commit_date: '2020-04-16T16:14:43.000Z'

 ...

...

∆2

3

co
m

m
it

1
co

m
m

it
2

Git History Extracted diffs Extracted tree data structure

name: 2020

children:

 ...

 - name: 16

 children:

 - name: '18:14:43'

 children:

 - name: no version change

 children:

 - name: 1.0.3

 children:

 - name: Meta data changes

 children:

 - name: API tags modified

 value: 1

 breaking: false

 - name: Non breaking change

 children:

 - name: path added

 value: 1

 ...

diff analyser

Versioning analyser

Transform the oasdiff
model to the tree model

M2M transformer

oasdiff

Extract the diffs from each
two consecutive commits

diff analyser

Versioning analyser

Analyse version changes

Inject changes classification and
versioning analysis to the model

oasdiff

Classify changes to breaking
non breaking, unclassified
and meta-data changes

...

Styles

Echarts

Render the model

GitHub
history

oasdiff

Meta-data changes

6

4

3

2

5

7

Inject styles1

All ∆s

Visualisation
tree model

M2M transformer Echarts

GitHub
history

oasdiff

Styles

oasdiff
diff analyser

Breaking changes

Non breaking changesUnclassified changes

API Versions Clock
Sunburst Model

API Versions Clock
Model generator

Versioning
analyser

ec
ha

rts

Internal component
External component

oasdiff

Meta-data changes

Changes
accumulator API Changes

Sunburst Model
∆

gi
t h

is
to

ry

Filter

Filter

Change classifiers

API Changes
Model generator

Styles
Ti

m
e

w
in

do
w

Changes classification

Generated models

Major

Pre-major

Minor

Pre-minor

Patch

Prepatch

Version changes classification

Minimum change frequency

APIcture

Fig. 3. API VERSION CLOCK and API CHANGES analysis and rendering pipeline

The extracted differential data serves as input for both the
Versioning analyzer and the Change classifiers, which generate
classification results regarding version changes and the types
of changes (breaking, non-breaking, metadata, unclassified).
These outputs, along with the necessary visual elements de-
scribed in Figure 2, are utilized by the API Version Clock
model generator, which then constructs the sunburst model.
Finally, the generated model is rendered using ECharts [28].

The Change classifiers consists of two components: oas-
diff [4], the external tool responsible for detecting breaking
changes, and diff analyzer a tool developed as part of our work,
which helps classify changes as non-breaking or unclassified.

Breaking changes are modifications made to an API that
disrupt existing functionalities and result in backward com-
patibility issues with the latest deployed version [50]. These
changes are identified and extracted from the differential data
using again oasdiff. Conversely, non-breaking changes refer
to modifications that do not introduce incompatibilities with
existing functionality or the ability of clients to interact with
the API. Unclassified changes, in the current version of the
tool, are non-breaking changes which we could not precisely
determine which parts of the API they affect.

C. Visualization Structure

In Figure 2, we illustrate the structure of the obtained API
VERSION CLOCK visualization:
• Localizing change in its temporal context: The commits

timestamps are mapped to the core rings of the sunburst
visualization, starting from the year, month, day, and time
of each commit. These rings provide a temporal context for
the visualization, allowing users to observe the chronological
order of the commits in a clockwise direction. They also allow
users to hierarchically filter along the time axis by selecting
to visualize only commits of a specific year, month, or day.

• Localizing version change in its temporal context: Since
the evolutionary analysis of our study relies on the git commit
history, the fourth ring of the version change visualization
plays a crucial role in indicating the exact timestamp of each
commit. This ring is color-coded based on the API version
associated with that particular timestamp, allowing for a clear
visual representation of version changes over time (Figure 2).
A unique color is associated with each version identifier,

currently based on a simple uniform mapping to the HUE
component of HSL color values.
• Discerning types of version change: While the inner core

of the visualization is dedicated to the time of each commit,
the next layer represents the version identifier of the API at
that time, extracted from the standard OAS metadata. While
the fourth ring highlights the version change, in the case where
semantic versioning is used, we distinguish in the Version ID
ring the types of version change by assigning a specific color
for each of the major, minor, and patch releases.

With our analysis on version identifier changes [43], we
could detect the presence of commits where the version was
reverted to a previous identifier. To highlight such backward
evolution steps. An example of this case is happening in
Bmore responsive API, where the version was reverted from
2.0.0 back to 1.3.0 again in one of the commits in late
September 2020. As can be seen from Figure 2, we added an
extra thin ring sandwiched between the colored API version
ring and the following one. The color of the ring is the same
as the version to which the revert happened. This ring will
remain empty for APIs with a monotonic version identifier
evolution and highlight backward versioning steps otherwise.
• Detecting API backward incompatibility: Within the con-

text of API elements, changes primarily pertain to modifica-
tions in the structure of endpoints, request/response schemas,
and security/authentication mechanisms. These alterations di-
rectly impact the functional aspects of the API, potentially
introducing breaking changes or enhancements to its capabili-
ties. On the other hand, changes in the metadata predominantly
involve updates to descriptive attributes that provide contextual
information about the API. These include modifications to
the API title, version number, server URL, and details about
the API provider. Such changes are typically non-breaking in
nature and focus on improving the clarity, documentation, or
administrative aspects of the API [21]. Within each version
segment, the sunburst chart displays on the outer rings, how
many changes were detected by comparing the current commit
against the previous commit. These changes are depicted first
by distinguishing the breaking changes from the non-breaking
ones and then – in the outer ring – by further indicating the
presence and the amount of specific types of changes.
• Assessing Semantic Versioning Compliance: To facili-

4

https://github.com/CodeForBaltimore/Bmore-Responsive.git

tate the assessment of compliance with semantic versioning
practices, we intentionally utilize the same color scheme to
represent both version identifier changes and the classification
of changes as breaking or non-breaking. This design choice al-
lows for easy visual identification of whether the API evolution
aligns with correct semantic versioning principles. Commit
nodes associated with breaking changes should correspond to
major version upgrades (), while non-breaking changes
should be observed alongside patch-level version upgrades (

). By examining the placement and distribution of these
node types, we expect users to readily detect instances where
changes are not in accordance with the expected versioning
rules.

D. API VERSION CLOCK Interactive Features

The visualization employs interactive ECharts features for
dynamic exploration of the sunburst plot structure at various
levels through zoom in and out. The zoom option aids in
examining changes within specific timestamps or periods.
Tooltips are essential, showing the change count for a slice. For
time rings, the tooltip displays how many changes occurred at
a given time.

IV. API CHANGES VISUALIZATION

A. Visualization goal

The purpose of this visualization is to provide a clear
understanding of the location of the changes occurring in
the API structure, its data model as well as related metadata
information. By visually representing the deletions,
additions, and modifications happening at the level of
metadata, structural and data model elements, it be-
comes easier to localize the frequently occurring changes and
comprehend the overall stability of the API design (Figure 4).

One important aspect to highlight is that the changes
visualization does not indicate when each change occurred.
This deliberate omission contributes to the scalability of the
visualization, as it allows for the accumulated changes across
multiple API versions and commits within a specific timeframe
to be captured in one visualization. This approach simplifies
the visualization process and enables a more efficient analysis,
particularly when dealing with APIs with long histories or
many fine-grained granular changes applied to it.

B. Building API CHANGES

To build the visualization, we use the same differentials
extracted for API VERSION CLOCK (See Figure 3) and
transform them into a sunburst model so that it can be
rendered using ECharts [28]. The structure of the sunburst
tree reflects the OpenAPI specification structure. However, we
only include OpenAPI elements which change at least once.
As we accumulate all changes from multiple commits, we keep
track of many times each element change, which is reflected
in the relative ring sector angle. The elements represented in
the sunburst plot are colored as defined in Figure 4.

In the API CHANGES visualization, instead of explicitly
displaying individual changes like in the API VERSION

pa
th
s

/roles

/c
on
ta
ct
/s
en
d

op
er
at
io
ns

PO
ST

re
qu
es
tB
od
y

co
nt
en
t

sc
he
m
a

pr
op
er
tie
s

en
tit
yI
ds

co
nt
ac
tId
s

GET

par
am
s

que
ry

GET

tagscsv

description

inf
ove

rsi
on

pa
th
s

op
er
at
io
ns

PO
ST

re
qu
es
tB
od
y

co
nt
en
t

sc
he
m
a

pr
op
er
tie
sGET

par
am
s

que
ry

GET

tags

inf
ove

rsi
on

HTTP M
etho

d
s

URLs

Modification

Addition

Removal

GET
PUT

DELETE

Metadata

API Structure

API D
at

a
M

o
d

el

POST
PATCH

Changes

Fig. 4. API CHANGES Design applied to the BMore Responsive API

CLOCK visualization, we employ an abstraction that focuses
on measuring the frequency of different types of changes.

APICTURE provides users with CLI options that offers the
ability to customize the API history timeframe of interest.
Specifically, in the context of API CHANGES visualization,
APIcture allows users to filter out changes occurring less
frequently than a defined minimum threshold. These are rep-
resented as Filters in Figure 3. Note that the Time window
Filter can also be used to customize the history time frame
for API VERSION CLOCK.

C. Visualization structure

We tailored the sunburst visualization to characterize the
nature and also represent the magnitude of the changes occur-
ring throughout the API lifespan and identify the unstable API
elements that have undergone more frequent modifications.
• API changes localization: The nature of the changes

shown in the visualization is contingent upon whether they
occur within the API structure elements, API datamodel or the
metadata elements, encompassing description fields, API title,
API version, server URL, and API provider information. By
distinguishing between changes in each of the later elements,
the visualization enables a more comprehensive understanding
of the different facets of changes occurring within the API
evolution. This distinction allows developers and stakeholders
to assess the amount of changes impacting both the functional
behavior of the API and its associated contextual information.

By presenting the changes in a way mimicking a derefer-
enced version of the original OAS specification tree structure,
it becomes easier to discern the exact areas or elements of
an API that have undergone most alterations over time. The
goal is to draw the attention the API elements affected by
changes during its history. The wider the ring sector angular
extent, the more frequently the corresponding API element
changes. Different change actions affecting the API elements
are highlighted using distinct colors (Figure 4): Deleted,

Added, Modified. These colored sectors refer to the type
of changes applied to the element representing in their parent
sector, the one found immediately above towards the center

5

2017

A
u
g

2

1
2

:2
0

:4
5

1
.0

.0
Fi

rs
t

C
o
m

m
it

1
4
:3

1
:4

2
1
.0

.0
n
e
w

 r
e
q
u
ir

e
d
 r

e
q
 p

a
ra

m

Oct

1
5
:5

3
:3

1
2
.0

.0

23

11
:2

7:
18

2.
0.

0

11:5
5:4

0
2.0

.0

re
q

pa
ra

m
 b

ec
am

e
re

qu
ire

d

body of p
arameter m

odifie
d

10:49:53
2.0.0

new required req param

N
ov

2
2 09:24:28 2.0.0

new required req param

req param removed23

0
9
:4

1
:3

1
3
.0

.0

new required req param

req
 p

aram
 b

ecam
e req

u
ired

re
q

 p
a
ra

m
 re

m
o
v
e
dap

i v
e
rs

io
n
 m

od
ifi

e
d

bo
dy

 o
f
pa

ra
m

et
er

 m
od

ifi
ed

2018

Ja
n

23

12
:0

3:
02

3.
0.

0

ne
w

 re
qu

ire
d

re
q

pa
ra

m

12
:4

2:
29

3.
0.

0

10:29:34

3.0.0

May

13:20:13

3.0.0

14:56:58

3.0.0

body of parameter modified

13:59:54
3.0.0

path removed without depr

2021Mar16:55:253.0.0path added
15:30:32

3.0.0

new required req param 14:55:42

3.0.0

 path removed without depr
11:17:24

3.0.0

path added

2022

D
ec

15

14:01:00

3.0.0

path added

14:01:27

3.0.0

sum
m

ary of PO
ST m

odified

14:03:54

3.0.1

api version m
odified

1
1
:2

4
:2

4

3
.0

.1

ap
i con

tact m
od

ified

2
0
2
3

M
a
y

1
6
:4

6
:5

1

4
.0

.0

0
9

:1
9

:3
8

4
.0

.0

su
m

m
a
ry

 o
f P

O
S
T
 m

o
d
ifi

e
d

path
s /s

a
le
s

o
p
e
ra
ti
o
n
s

P
O
S
T

p
a
ra
m
s

form
D
ata

fo
rm
Da
ta

formData
/claim

s

operationsPOST

param
s

formData

form
D
ata

su
m
m
a
ry

info
ver

sion

Fig. 5. Visualizations of the SunRocks API Evolution (24 commits over 5 versions during 2114 days, 0⋆)

of the sunburst. These light-colored action sectors serve as a
visual marker, drawing attention to the specific location within
the API structure where the modification has taken place.

However, it should be noted that for non-object elements,
such as the metadata element, and certain data types (e.g.,
enumeration), the only discernible alteration that can be de-
tected is when the value itself changes. In these cases, there
are no deeper levels or nested API elements to highlight, as
the modification is confined to the value itself.

• Quantifying change granularity: Change granularity can
be assessed by examining the level (depth of the rings) asso-
ciated with a specific API element. For instance, if a specific
endpoint is added (i.e., addition for a path), it represents a less
fine-grained change as compared to the addition of a specific
query parameter. This can be seen in API CHANGES of Bmore
Responsive API in Figures 1 and 4. Similarly, the addition
of a new property to the schema of a response object for a
specific operation signifies a more fine-grained change when
contrasted with the addition of a parameter.

D. API CHANGES Interactive Features

Like the API VERSION CLOCK, the API CHANGES visu-
alization utilizes ECharts’ interactive features. Here, zooming
hones in on changes within API elements. Clicking an ele-
ment expands rings for detailed insight into nested elements
and changes. Tooltips show element frequency and labels.
Labels are hidden when angles are tight, enhancing readability.
APICTURE allows customization by time frame and minimum
frequency for tailored API CHANGES visualization.

V. API EVOLUTION GALLERY

In this section, we present five API evolution examples
(Figures 5–9) growing from 24 commits up to 144 commits.
They were selected out of a dataset of 3271 APIs, as they
present different characteristics in terms of their evolution

dynamics, their use of semantic versioning, the reached level
of maturity, and their co-evolution with different repository
artifacts. In the captions, we report the size of their evolution
history (number of commits, versions, and duration in days)
and the number of GitHub stars for the corresponding reposi-
tory, which were also considered during the example selection
process. The visualization gallery is obtained from a snapshot
of the corresponding git repositories taken on 26 June 2023.

A. SunRocks API Evolution
The SunRocks’s API VERSION CLOCK visualization pro-

vides a chronological depiction of the changes occurring in
the SunRocks API from version 1.0.0 to version 4.0.0,
spanning over a period of more than 5 years (Figure 5
left). The majority of breaking changes took place within the
first year, coinciding with two major version upgrades. No
minor version increments were observed, and only a single
patch version upgrade occurred (3.0.1), accompanied by a
metadata change.

In all major version upgrades, there were always some
unclassified or breaking changes, indicating that each upgrade
involved modifications with a potential impact on the API
backward compatibility. Upon closer examination through the
API CHANGES Visualization (Figure 5 right), it becomes
evident that the changes primarily manifested at the parameter
level of POST methods of the /claims and /sales paths,
with no significant alterations reaching the data model. This
observation suggests that the developers focused on refining
the API structure without requiring extensive modifications to
the corresponding data representation.

B. xOpera REST API Evolution
Unlike the SunRocks API, the versioning strategy employed

in the xOpera API (Figure 6 left) demonstrates a tendency
towards minor version upgrades and patch upgrades. Inter-
estingly, these version upgrades were consistently free of

6

2
0
2
0

Fi
rs

t
C

o
m

m
it

a
p
i
d
e
sc

ri
p
ti

o
n
 m

o
d
ifi

e
d

2
0

2
1

Ja
n

29

17
:2

9:
44

2.
0.

0
A
PI

 t
ag

s
m

od
ifi

ed

pa
th

 a
dd

ed

ap
i d

es
cr

ip
tio

n
m

od
ifi

ed

Feb

1

18:3
1:4

2
2.0

.0

API
 ta

gs
 m

od
ifi

ed

pat
h a

dded

api d
escr

iptio
n m

odifie
d

12

17:04:26
2.0.0

 path removed without depr

res body type
changed

res required property rem
oved

sum
m

ary of GET m
odified

API tags m
odified

p
a
th

 a
d
d
e
d

un
re

qu
ire

d
sc

he
m

a
pr

op
er

ty
 o

f r
es

p

ty
pe

 o
f s

ch
em

a
m

od
ifi

ed

 p
at

h
re

m
ov

ed
 w

ith
ou

t d
ep

r

Mar

api v
ersi

on m
odifie

d

api version modified

api version modified
api version modified

May

Jun2.4.0
res success status removed

resp added to POST

api version modified

res property type changed

api version modified

body of parameter modified

Jul

26

path added

 path rem
oved w

ithout depr

2.7.0

api version m
odified

path added

O
ct

api version m
odified

a
p
i ve

rsio
n
 m

o
d
ifi

e
d

pa
th
s

/b
lu
ep
rin
t

op
er
at
io
ns

re
sp
on
se
s

co
nt
en
t

ite
m
sGET

con
tent

sch
ema

ve
rsi
on

Fig. 6. Visualizations of the xOpera REST API Evolution (42 commits over 14 versions during 408 days, 3⋆)

2020

Jul

0
.0

.1
Fi

rs
t

C
o
m

m
it

0
.0

.2

9

0
.0

.2
0
.0

.2
0
.0

.2
re

q
 p

ar
am

 r
em

ov
ed

21
:1

8:
03

0.
0.

2
re

q
pa

ra
m

 d
ef

au
lt
 v

al
ue

 c
ha

ng
ed

bo
dy

 o
f p

ar
am

et
er

 m
od

ifi
ed

22
:0

5:
01

0.
0.

2

re
q

pa
ra

m
 d

ef
au

lt
va

lu
e

ch
an

ge
d

re
q

pa
ra

m
 m

ax
 s
et

re
q p

ar
am

 m
in

 se
t

body of p
ara

meter m
odifie

d

0.0.2

0.0.2

1
3

0.0.2

0.0.2

0.0.2 req body min items increased

0.0.2
0.0.2
0.0.2
0.0.2 api description modified

0.0.2
api description modified

0.0.20.0.2
api description modified

0.0.20.0.2

14

0.0.20.0.2

0.0.2

16

0.0.2
api description m

odified

0.0.2

0
.0

.2

20

0
.0

.2

0
.0

.3
a
p
i ve

rsio
n
 m

o
d
ifi

e
d

23

1
9

:0
2

:2
4

0
.0

.3
a
p
i d

e
scrip

tio
n
 m

o
d
ifi

e
d

a
p
i title

 m
o
d
ifi

e
d

30

0
.0

.4

0
.0

.4

0
.0

.4

0
.0

.4

ap
i d

es
cr

ip
ti
on

 m
od

ifi
ed

0.
0.

4

ap
i d

es
cr

ip
ti
on

 m
od

ifi
ed

Aug

14

0.
0.

4

0.
0.

4

0.
0.

40.
0.

40.0
.40.0.50.0.5

Sep

0.0.5

body of parameter m
odified

1
1

20:30:44

0.0.5

api description modified
desc of POST modifiedsummary of POST modified

1
8

0.0.5body of parameter modified
0.0.5
0.0.5

0.0.5

api description modified

2
3

0.0.5

0.1.1

api version modified

Oct

27

0.1.1

body of parameter modified 0.1.2

api version modified

2021

Feb

0.1.2

api description m
odified

1.0.0

api version m
odified

Apr

26

15:09:19

1.0.0

api description m
odified

body of param
eter m

odified

2
0
2
2

1.0.0

api description m
odified

1
.0

.0

Ju
l

1
.0

.0

ap
i d

e
scrip

tion
 m

od
ifi

e
d

1
.0

.0

b
o
d
y o

f p
a
ra

m
e
te

r m
o
d
ifi

e
d

1
.0

.0
1

.0
.0

p
a
th
s

/p
in
s

o
p
e
ra
ti
o
n
s

G
ET

param
s

query

limit

schema

name

description

q
u
e
ry

PO
ST

re
qu
es
tB
od
y

co
nt
en
t

sc
he
m
a

202

conte
nt

schem
a

/pins/{id}
operations

POST

d
e
scrip

tio
n

ver
sio

n

Fig. 7. Visualizations of the IPFS Pinning Service API Evolution (61 commits over 8 versions during 773 days, 84⋆)

breaking changes. The largest evolutionary step happened on
February 12th, 2021, when 15 paths were removed without
deprecation and 17 paths were added. This change was applied
to the version 2.0.0 without any immediate impact on the
version identifier, which was changed 1 month later to 2.1.0.

The API CHANGES shows that all three types of structural
changes occurred with the addition of 25 paths, the modifica-
tion of 21 paths, and the removal of 17 paths. Additionally,
26 changes impacted the API description metadata. Unlike the
SunRocks API, some changes impacted the API data model,
e.g., the removal or addition of response schema properties.

C. IPFS Pinning Service API Evolution

The IPFS Pinning Service API (Figure 7) illustrates the
early preview release [31] phase of an API, which after almost
one year of development reaches version 1.0.0.

Most of the API structure and data model appears to be in
place since the beginning, as there are no additions/removals
neither at the level of paths or methods, nor at the level of
the schema elements, as can be seen from the API CHANGES
visualization. 20 out of 22 modifications affected the GET and
POST operations of /pins path. The depth query parameter
of the GET operation was added and subsequently removed.

Most of the breaking changes are concentrated in the early
commits during the first few days of the project, while the
remaining commits (largely affecting the natural language doc-
umentation) are backward compatible or unclassified. While
version identifiers were gradually and regularly upgraded
during the pre-release phase, the version 1.0.0 identifier
remains fixed, even with minor structural modifications being
still applied months after the initial release.

7

2
0
2
0

2021

Jan

22

00
:1

2:
16

2.
8.

2
 p

at
h

re
m

ov
ed

 w
it
ho

ut
 d

ep
r

pa
th

 a
dd

ed

23

01:31:30
2.8.3

 p
at

h re
m

ov
ed

 w
ith

ou
t d

ep
r

path added

2
7 21:09:14 2.8.2

 path removed without depr

path added

29

21:42:56
2.8.4 path removed without deprpath added

21:58:07

2.8.5
 path rem

oved without depr

path added

2
2
:4

9
:0

1
2
.8

.4

 path rem
oved w

ithout depr

p
a
th

 a
d
d
e
d

Fe
b

2

2
0
:3

9
:1

9
2
.8

.4
 p

a
th

 r
e
m

o
v
e
d
 w

it
h
o
u
t

d
e
p
r

p
a
th

 a
d
d
e
d

3

2
.8

.4

 p
at

h
 r

em
ov

ed
 w

it
h
ou

t
d
ep

r

pa
th

 a
dd

ed
02

:3
2:

08

2.
8.

4

pa
th

 r
em

ov
ed

 w
ith

ou
t
de

pr

pa
th

 a
dd

ed

19:00:39

2.8.4

 path
 re

m
ove

d w
ith

out d
eprpath added

2022

M
ay

in
fo

v
e
rs
io
n

p
a
th
s

Fig. 8. Visualizations of the Xero Projects API Evolution (125 commits over 93 versions during 999 days, 80⋆)

2
0
1
8

D
e
c

Fi
rs

t
C

o
m

m
it

p
a
th

 a
d
d
e
d

2019

Ja
n

re
q

pa
ra

m
 r

em
ov

ed

re
s

pr
op

er
ty

 t
yp

e
ch

an
ge

d

M
ar

su
m

m
ar

y
of

 G
ET

 m
od

ifi
ed

bo
dy

 o
f p

ar
am

et
er

 m
od

ifi
ed

re
q

pa
ra

m
 re

m
ov

ed

ap
i v

er
sio

n
m

od
ifi

ed

ap
i v

er
sio

n m
od

ifi
ed

api v
ersi

on m
odifie

d

path added

api v
ersi

on m
odifie

d

req param default v
alue changed

body of parameter m
odified

api version modified

api version modified

Aug

path added

api version modified

api version modified

1
5

api version modified

summary of GET modified

api version modified

body of parameter modified

api version modified
path added

13:42:24 0.5.12
 path removed without deprdesc of GET modifiedsummary of GET modified
path addedreq param removed

desc of GET modified

summary of GET modified

api version modified

api version modified

api version modified

body of parameter modified

api version m
odified

api version m
odified

api version m
odified

api version m
odified

api version m
odified

N
ov

0.7.0

api version m
odified

sum
m

ary of G
ET m

odified

resp added to G
ET

api version m
odified

api version m
odified

sum
m

ary of G
ET m

odified

b
od

y of p
aram

eter m
od

ifi
ed

ap
i version

 m
od

ifi
ed

D
e
c

a
p
i v

e
rsio

n
 m

o
d
ifi

e
d

su
m

m
a
ry

 o
f G

E
T
 m

o
d
ifi

e
d

b
o
d
y
 o

f p
a
ra

m
e
te

r m
o
d
ifi

e
d

a
p
i
v
e
rs

io
n
 m

o
d
ifi

e
d

2020

Ja
n

a
p
i
v
e
rs

io
n
 m

o
d
ifi

e
d

a
p
i
v
e
rs

io
n

m
o
d
ifi

e
d

13

ap
i v

er
si

on
 m

od
ifi

ed

ap
i v

er
si

on
 m

od
ifi

ed

ap
i v

er
si

on
 m

od
ifi

ed

ap
i v

er
si

on
 m

od
ifi

ed

ap
i v

er
si

on
 m

od
ifi

ed

de
sc

 o
f G

ET
 m

od
ifi

ed

de
sc

 o
f G

ET
 m

od
ifi

ed

ap
i v

er
si
on

 m
od

ifi
ed

ap
i v

er
si
on

 m
od

ifi
ed

Mar

ap
i v

er
sio

n
m

od
ifi

ed

ap
i v

ers
ion

 m
od

ifie
d

api v
ersi

on m
odifie

d

May

api v
ersi

on m
odifie

d

desc of P
UT m

odified

0.8.19

path added

api version modified

Jul

2
0

13:52:22

0.8.20

desc of GET modified

summary of GET modifiedpath added

0.8.20
path removed without depr

desc of GET modified

summary of GET modified

body of parameter modified

2
1

19:28:42

0.8.20

desc of GET modified

summary of GET modified

path added

body of parameter modified

body of parameter modified

23

res body type changed

type of schema modified

16:16:23

0.8.20

 path removed without depr

req param
 rem

oved

desc of GET m
odified

sum
m

ary of GET m
odified

A
ug

13

path added

 path rem
oved w

ithout depr

path added

a
p
i ve

rsio
n
 m

o
d
ifi

e
d

a
p
i ve

rsio
n
 m

o
d
ifi

e
d

a
p
i v

e
rsio

n
 m

o
d
ifi

e
d

a
p
i v

e
rsio

n
 m

o
d
ifi

e
d

a
p
i v

e
rsio

n
 m

o
d
ifi

e
d

pa
th
s

operations
G
ET

responses

content

properties

items
items

query

su
m
m
a
ry

/e
xp
or
t/
en
tr
ie
s

op
er
at
io
ns

G
ET

qu
er
y

GET

ve
rs
io
n

Fig. 9. Visualizations of the OpenFairDB API Evolution (144 commits over 52 versions during 1563 days, 53⋆)

D. Xero Projects API Evolution

The Xero Projects API has been selected out of 11 APIs
documented in a repository still under active development at
the time of writing. Most of the structural changes occurred
in the first two months of a 3-year long history. We can see 9
commits, from version 2.8.2 until 2.8.4, during which 13
paths were removed and 7 paths were added. These breaking
changes resulted in a patch version upgrade, up to version
2.8.5. This version was however reverted back to the 2.8.4
identifier which remained constant until all remaining changes
were committed. The version identifier then started to grow
all the way to 2.38.0, resulting in approx 50% of the API
CHANGES, due to the co-evolution of this API with the others
in the same repository: whenever one API description changes,
developers bump the versions of all API descriptions in the
same repository.

E. OpenFairDB API Evolution

The OpenFairDB API Evolution (Figure 9) is extracted
from a repository in which both the API documentation and
the backend implementation are found. Thus, developers will
often use patch version upgrades without any API changes to
track changes to the underlying backend implementation code.
During the summer of 2020, a number of breaking changes
were however introduced while keeping the same version
0.8.20 identifier. Moreover, commits of version upgrades
never included structural changes.

Overall, there were more paths additions than deletions.
And, most of the structural changes at the level of the paths
are modifications. The most modified path is the /search
endpoint (affecting both its response schema and query param-
eters), while the /search/duplicates path was added
and later removed from the API.

8

https://github.com/kartevonmorgen/openfairdb

VI. DISCUSSION

A. API VERSION CLOCK

One limitation of this visualization is that it may not
scale well when dealing with longer histories of an API.
The representation of individual commits and their associated
changes can become overwhelming and cluttered, making
it challenging to extract meaningful insights from the non-
interactive visualization. The interactive version of the visual-
ization can be helpful to zoom into specific sections of the
timeline. Alternatively, an icicle plot [48] layout could be
used so that the long history of APIs with a large number
of commits can be displayed in a scrollable viewport.

To address this limitation and improve scalability, an ab-
straction technique can be applied to aggregate the changes
over longer periods of time in the case of APIs with many
frequent commits or long history. For example, all commits
leading to a specific version change can be aggregated, consid-
ering that developers may first commit changes to the artifact
and only update the versioning metadata in a separate commit.
This would not fundamentally change the ring structure of the
visualization, which would simply result in a less granular
commit timestamp ring, where each sector would account for
all changes occurring during a certain API version.

The version color on the fourth ring could better reflect
semantic versioning. As opposed to uniformly assigning a
distinct color to each version identifier, the mapping could
use color shade variations for patch versions, similar colors for
minor upgrades and different colors for each major release.

Furthermore, a prior investigation into web API versioning
practices [43] unveiled that semantic versioning, following
the MAJOR.MINOR.PATCH format, represents merely the
most frequent one out of the 55 diverse API versioning
formats. While the current version of the versioning analyzer
already detects pre-release tags, it could be further extended to
support a broader range of commonly adopted formats, such
as calendar-based versioning. In this particular case, the same
visualization would show the consistency between the commit
timestamp and the version timestamp.

As APIs occasionally change title during their evolution,
we plan to enhance the visualization to show during which
timeframe each API title was in use. Likewise, it may be useful
to filter the commits used to build the visualization based on
the specific value given to the API title.

B. API CHANGES

One of the key design decisions of the API CHANGES
visualization is the lack of precise time information for each
individual change. While this enhances scalability by aggre-
gating changes across multiple API versions, it can hinder
the ability to analyze the chronological order of changes
and understand their possible causal relationships. Given the
atemporal nature of the API CHANGES visualization, it is not
possible to perform such analysis with it. To find out when
a certain change occurred and which version was affected,
the commit corresponding to the selected change can be
highlighted in the twin API VERSION CLOCK visualization.

The visualization’s color scheme can be further enhanced
to distinguish other frequently changing API features such as
media types, security schemes, or other protocol-specific ele-
ments (e.g., response status codes). It would also be possible
to apply a color layer to distinguish which changes did break
compatibility with clients and which ones did not.

VII. RELATED WORK

A. Visualizing software changes

Alexandru et al. [10] introduce Evo-clocks, a technique that
uses circular charts to show changes in software metrics over
time. Evo-clocks can reveal patterns and trends in software
evolution, such as growth, decay, stability, and volatility.

Another approach to visualize software evolution is pre-
sented by Baum et al. [12], who developed GETAVIZ, a frame-
work that generates structural, behavioral, and evolutionary
views of software systems. GETAVIZ uses 3D city metaphors
to represent the structure and behavior of software entities,
and color-coded timelines to show their evolution. Similarly,
Pfahler et al. [35] introduces a technique to visualize evolving
software using the 3D city metaphor, representing the structure
and evolution of software systems. They use height, width,
and depth to encode the size, complexity, coupling of software
entities, and color to encode their age. They also use animation
and morphing to show the changes in software entities over
time. Their technique can help developers identify hotspots,
outliers, and anomalies in software evolution.

In [16], Hanjalić proposed ClonEvol, a tool that visualizes
the evolution of code clones in software systems. ClonEvol
uses a mirrored radial genealogy tree to show how clones
are created, modified, and removed over time. ClonEvol also
provides various metrics and filters to help users analyze the
impact of clones on software quality and maintenance.

Kula et al. [23] visualize the evolution of systems and their
library dependencies. They use a graph-based representation
to show the dependencies between systems and libraries, and a
treemap-based representation to show the size and complexity
of systems. Also using a treemap-based visualization, Tua
et al. [47] presents a technique to visualize software evolution.
But in their case, the treemap representations use Voronoi
tessellation to partition the space according to the size and
complexity of software entities. They use color to encode
the age of software entities, and animation and morphing to
show their changes over time. However, the visualization does
not provide a classification of the visualized changes, which
hinders the detection of disruptive changes and the assessment
of whether a correct versioning strategy was applied.

B. Sunburst Visualizations

While in this paper we propose to represent key aspects of
API evolution using the sunburst visualization, this hierarchi-
cal visualization has been successfully applied to many other
domains. Liu and Wang [30] proposed a hierarchical infor-
mation visualization method and applied it to public opinion
analysis. They used sunburst visualization to show the distri-
bution of public opinions on different topics and subtopics,

9

and to compare the opinions across different regions and time
periods. Stab et al. [45] presented SemaSun, a visualization
tool that uses an improved sunburst visualization metaphor
to display semantic knowledge, the structure and content of
ontologies, and to support interactive exploration and editing
of semantic data. In [42], Rodrigues et al. developed Multi-
VisioTrace, a traceability visualization tool that uses sunburst
visualization to show the relationships between artifacts in
software development. They used sunburst visualization to
show the traceability links between requirements, design, code,
and test cases, and to support traceability analysis and man-
agement. For the same traceability use case, Rodden aimed
in [41] to summarize user navigation sequences on websites
using a sunburst to show the frequency and order of visits to
different pages as well as the transitions between them.

C. Consistency of Versioning and Changes

Previous research work investigated semantic versioning
and its impact on software ecosystems. In [37], Raemaekers
et al. proposed a metric to measure the stability of software
libraries based on the frequency and severity of breaking
changes. They applied their metric to 30 Java libraries and
found that most libraries had a low stability score. In [38],
Raemaekers et al. extended this work by analyzing the Maven
repository and comparing the semantic versioning rules with
the actual breaking changes detected by bytecode analysis.
They found that 14.5% of the releases violated the semantic
versioning rules by introducing breaking changes in minor or
patch versions. Raemaekers et al. further investigated in [39]
the impact of breaking changes on the clients of the libraries
and found that 32.9% of the clients were affected by at least
one breaking change. In [34], Ochoa et al. replicated the
study of Raemaekers et al. on a more recent snapshot of the
Maven repository and found that the percentage of semantic
versioning violations increased to 22.8%. They also performed
a qualitative analysis of the reasons for breaking changes and
found that most of them were unintentional or unavoidable.

In the case of NPM, in [36], Pinckney et al. conducted
a large scale analysis of semantic versioning in NPM and
found that 25% of the releases violated the semantic versioning
rules by introducing breaking changes in minor or patch
versions. They also found that semantic versioning violations
had a negative impact on the adoption and satisfaction of
the packages. To mitigate packages versioning inconsistencies
on NPM, Abdalkareem et al. proposed in [7] a machine
learning approach to determine the semantic versioning type
of NPM packages releases based on code changes and commit
messages. They achieved an accuracy of 86.7% on a dataset
of 5000 releases.

While several empirical studies have investigated web API
evolution [13, 20, 26, 44] none of the existing work has
specifically examined Web API changes and versions consis-
tency. Our approach can be seen as an initial push towards
promoting a more consistent relationship between versioning
and functional alterations in this context.

VIII. CONCLUSION

This paper presents two novel interactive visualizations tai-
lored for developers, researchers, and stakeholders involved in
API development, management, and evolution. API CHANGES
and API VERSION CLOCK aim to offer valuable insights into
the recurrent API changes, and versioning practices, aiding
in understanding the evolution and backward compatibility
between consecutive API versions and the adherence of the
API to semantic versioning practices. The provided visual-
izations can be integrated into devops pipelines, helping to
continuously gather awareness of the entire history of changes
and see the evidence needed to enforce the chosen versioning
strategies [19, 40]. From the API client developers side, these
visualizations can help users to make informed decisions about
which API is stable enough to rely on for their system, identify
introduced compatibility issues, and reflect on the impact of
API modifications on their clients.

The availability of these visualizations through the APIC-
TURE tool provides a valuable resource for API practitioners
and researchers, allowing them to explore and analyze API
evolution in a comprehensive and intuitive manner. It is
released on NPM [1] as command-line tool that automatically
generates the API CHANGES and API VERSION CLOCK
visualizations from any git repository containing the history of
an OAS specification. The tool can render each visualization
separately as an SVG or PNG image, but also generate an
HTML page with both interactive visualizations, individually
or side by side, together with various evolution metrics visual-
izations and metadata. It can be installed using the command:
npm install -g apict. We also provide an extended
version of the visualizations gallery: APIcture demo [3].

IX. FUTURE WORK

We plan to carry out further experiments in order to assess
the usefulness, understandability, accessibility, and effective-
ness of APICTURE following existing visualization evaluation
techniques [33].

While the visualizations have been originally designed in
the context of APIs described using the OAS standard, they
can be generalized to other artifacts. The API VERSION
CLOCK requires a stream of commits with the corresponding
version identifiers together with metrics characterizing and
classifying the changes w.r.t. the previous commit. The API
CHANGES visualization is applicable to show how any nested
object structure evolves, as it only requires a lightweight
customization for color mapping different properties. We plan
to broaden the scope of applicability of the visualization tool
by decoupling it from its domain of inception in the near
future.

Acknowledgements

The authors would like to express their gratitude to Deepan-
sha Chowdhary for helping develop the initial prototype of the
API VERSION CLOCK visualization. This work was supported
by the SNF with the API-ACE project number 184692.

10

https://www.npmjs.com/package/apict
https://souhailas.github.io/VISSOFT2023/

REFERENCES

[1] APIcture. https://www.npmjs.com/package/apict.
[2] Bmore Responsive API. https://codeforbaltimore.github.io/

Bmore-Responsive/.
[3] Gallery. https://souhailas.github.io/VISSOFT2023/.
[4] oasdiff tool. https://github.com/Tufin/oasdiff.
[5] OpenAPI Initiative. https://www.openapis.org/.
[6] Semantic Versioning. https://semver.org/.
[7] Rabe Abdalkareem, Md Atique Reza Chowdhury, and Emad

Shihab. A machine learning approach to determine the semantic
versioning type of npm packages releases. arXiv preprint
arXiv:2204.05929, 2022.

[8] Juan Pablo Sandoval Alcocer, Fabian Beck, and Alexandre
Bergel. Performance evolution matrix: Visualizing performance
variations along software versions. In 2019 Working conference
on software visualization (VISSOFT), pages 1–11. IEEE, 2019.

[9] Carol V Alexandru. Efficient software evolution analysis: algo-
rithmic and visual tools for investigating fine-grained software
histories. PhD thesis, University of Zurich, 2019.

[10] Carol V Alexandru, Sebastian Proksch, Pooyan Behnamghader,
and Harald C Gall. Evo-clocks: Software evolution at a
glance. In 2019 Working Conference on Software Visualization
(VISSOFT), pages 12–22. IEEE, 2019.

[11] Len Bass, Ingo Weber, and Liming Zhu. DevOps – A Software
Architect’s Perspective. Addison-Wesley, 2015.

[12] David Baum, Jan Schilbach, Pascal Kovacs, Ulrich Eisenecker,
and Richard Müller. Getaviz: generating structural, behav-
ioral, and evolutionary views of software systems for empirical
evaluation. In 2017 IEEE Working Conference on Software
Visualization (VISSOFT), pages 114–118. IEEE, 2017.

[13] Fabio Di Lauro, Souhaila Serbout, and Cesare Pautasso. A
large-scale empirical assessment of web api size evolution.
Journal of Web Engineering, pages 1937–1980, 2022.

[14] Murat Erder, Pierre Pureur, and Eoin Woods. Continuous
Architecture in Practice: Software Architecture in the Age of
Agility and DevOps. Addison-Wesley, 2021.

[15] Patric Genfer, Johann Grabner, Christina Zoffi, Mario Bernhart,
and Thomas Grechenig. Visualizing metric trends for software
portfolio quality management. In 2021 Working Conference on
Software Visualization (VISSOFT), pages 88–99. IEEE, 2021.

[16] Avdo Hanjalić. ClonEvol: Visualizing software evolution with
code clones. In Proc. First Working Conference on Software
Visualization (VISSOFT), pages 1–4. IEEE, 2013.

[17] James Higginbotham. Principles of Web API Design: Delivering
Value with APIs and Microservices. Addison-Wesley, 2021.

[18] André Hora, Romain Robbes, Marco Tulio Valente, Nicolas An-
quetil, Anne Etien, and Stéphane Ducasse. How do developers
react to api evolution? a large-scale empirical study. Software
Quality Journal, 26:161–191, 2018.

[19] Jez Humble and David Farley. Continuous Delivery: Reliable
Software Releases Through Build, Test, and Deployment Au-
tomation. Addison-Wesley, 2010.

[20] Holger Knoche and Wilhelm Hasselbring. Continuous api
evolution in heterogenous enterprise software systems. In Proc.
18th International Conference on Software Architecture (ICSA),
pages 58–68, 2021.

[21] Rediana Koçi, Xavier Franch, Petar Jovanovic, and Alberto
Abelló. Classification of changes in api evolution. In 2019 IEEE
23rd International Enterprise Distributed Object Computing
Conference (EDOC), pages 243–249. IEEE, 2019.

[22] Rediana Koçi, Xavier Franch, Petar Jovanovic, and Alberto
Abelló. Web api evolution patterns: A usage-driven approach.
Journal of Systems and Software, page 111609, 2023.

[23] Raula Gaikovina Kula, Coen De Roover, Daniel German,
Takashi Ishio, and Katsuro Inoue. Visualizing the evolution of
systems and their library dependencies. In 2014 Second IEEE

Working Conference on Software Visualization, pages 127–136.
IEEE, 2014.

[24] Raula Gaikovina Kula, Ali Ouni, Daniel M German, and
Katsuro Inoue. An empirical study on the impact of refactoring
activities on evolving client-used apis. Information and Software
Technology, 93:186–199, 2018.

[25] Patrick Lam, Jens Dietrich, and David J. Pearce. Putting the
semantics into semantic versioning. In Proc. of the 2020
ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software, page
157–179, 2020.

[26] Maxime Lamothe, Yann-Gaël Guéhéneuc, and Weiyi Shang. A
systematic review of api evolution literature. ACM Computing
Surveys (CSUR), 54(8):1–36, 2021.

[27] Arnaud Lauret. The design of web APIs. Simon and Schuster,
2019.

[28] Deqing Li, Honghui Mei, Yi Shen, Shuang Su, Wenli Zhang,
Junting Wang, Ming Zu, and Wei Chen. Echarts: a declarative
framework for rapid construction of web-based visualization.
Visual Informatics, 2(2):136–146, 2018.

[29] Jun Li, Yingfei Xiong, Xuanzhe Liu, and Lu Zhang. How
does web service api evolution affect clients? In 2013 IEEE
20th International Conference on Web Services, pages 300–307.
IEEE, 2013.

[30] Chanjun Liu and Peng Wang. A sunburst-based hierarchical
information visualization method and its application in public
opinion analysis. In 2015 8th International Conference on
Biomedical Engineering and Informatics (BMEI), pages 832–
836. IEEE, 2015.

[31] Daniel Lübke, Olaf Zimmermann, Cesare Pautasso, Uwe Zdun,
and Mirko Stocker. Interface evolution patterns: balancing
compatibility and extensibility across service life cycles. In
Proc. 24th EuroPLoP, 2019.

[32] Mehdi Medjaoui, Erik Wilde, Ronnie Mitra, and Mike Amund-
sen. Continuous API management. O’Reilly, 2021.

[33] Leonel Merino, Mohammad Ghafari, Craig Anslow, and Oscar
Nierstrasz. A systematic literature review of software visualiza-
tion evaluation. Journal of systems and software, 144:165–180,
2018.

[34] Lina Ochoa, Thomas Degueule, Jean-Rémy Falleri, and Jurgen
Vinju. Breaking bad? semantic versioning and impact of break-
ing changes in maven central: An external and differentiated
replication study. Empirical Software Engineering, 27(3):61,
2022.

[35] Federico Pfahler, Roberto Minelli, Csaba Nagy, and Michele
Lanza. Visualizing evolving software cities. In Proc. Working
Conference on Software Visualization (VISSOFT), pages 22–26,
2020.

[36] Donald Pinckney, Federico Cassano, Arjun Guha, and Jonathan
Bell. A large scale analysis of semantic versioning in npm.
In IEEE International Working Conference on Mining Software
Repositories, 2023.

[37] Steven Raemaekers, Arie Van Deursen, and Joost Visser. Mea-
suring software library stability through historical version anal-
ysis. In 2012 28th IEEE international conference on software
maintenance (ICSM), pages 378–387. IEEE, 2012.

[38] Steven Raemaekers, Arie Van Deursen, and Joost Visser. Se-
mantic versioning versus breaking changes: A study of the
maven repository. In Proc. 14th International Working Confer-
ence on Source Code Analysis and Manipulation, pages 215–
224. IEEE, 2014.

[39] Steven Raemaekers, Arie van Deursen, and Joost Visser. Se-
mantic versioning and impact of breaking changes in the maven
repository. Journal of Systems and Software, 129:140–158,
2017.

[40] James Roche. Adopting devops practices in quality assurance.
Communications of the ACM, 56(11):38–43, 2013.

11

https://www.npmjs.com/package/apict
https://codeforbaltimore.github.io/Bmore-Responsive/
https://codeforbaltimore.github.io/Bmore-Responsive/
https://souhailas.github.io/VISSOFT2023/
https://github.com/Tufin/oasdiff
https://www.openapis.org/
https://semver.org/

[41] Kerry Rodden. Applying a sunburst visualization to summa-
rize user navigation sequences. IEEE computer graphics and
applications, 34(5):36–40, 2014.

[42] Adriana Rodrigues, Maria Lencastre, and A de A Gilberto Filho.
Multi-VisioTrace: traceability visualization tool. In Proc. 10th
International Conference on the Quality of Information and
Communications Technology (QUATIC), pages 61–66. IEEE,
2016.

[43] Souhaila Serbout and Cesare Pautasso. An empirical study of
Web API versioning practices. In International Conference on
Web Engineering, pages 303–318. Springer, 2023.

[44] SM Sohan, Craig Anslow, and Frank Maurer. A case study of
web api evolution. In Proc. IEEE World Congress on Services,
pages 245–252. IEEE, 2015.

[45] Christian Stab, Matthias Breyer, Kawa Nazemi, Dirk Burkhardt,
Cristian Hofmann, and Dieter Fellner. Semasun: visualization
of semantic knowledge based on an improved sunburst visu-
alization metaphor. In EdMedia+ Innovate Learning, pages
911–919. Association for the Advancement of Computing in
Education (AACE), 2010.

[46] Mirko Stocker and Olaf Zimmermann. From code refactoring
to API refactoring: Agile service design and evolution. In
Service-Oriented Computing (SummerSOC 2021), volume 1429
of Communications in Computer and Information Science,
pages 174–193. Springer, 2021.

[47] Davide Paolo Tua, Roberto Minelli, and Michele Lanza.
Voronoi evolving treemaps. In Proc. Working Conference on
Software Visualization (VISSOFT), pages 1–5, 2021.

[48] Huub van de Wetering, Nico Klaassen, and Michael Burch.
Space-reclaiming icicle plots. In 2020 IEEE Pacific Visualiza-
tion Symposium (PacificVis), pages 121–130. IEEE, 2020.

[49] Laerte Xavier, Aline Brito, Andre Hora, and Marco Tulio Va-
lente. Historical and impact analysis of api breaking changes: A
large-scale study. In 2017 IEEE 24th International Conference
on Software Analysis, Evolution and Reengineering (SANER),
pages 138–147. IEEE, 2017.

[50] Laerte Xavier, Andre Hora, and Marco Tulio Valente. Why do
we break apis? first answers from developers. In Proc. IEEE
24th International Conference on Software Analysis, Evolution
and Reengineering (SANER), pages 392–396. IEEE, 2017.

[51] Olaf Zimmermann, Mirko Stocker, Daniel Lübke, Uwe Zdun,
and Cesare Pautasso. Patterns for API Design: Simplifying In-
tegration with Loosely Coupled Message Exchanges. Addison-
Wesley, 2022.

12

	Introduction
	Use Case Scenarios and Example API
	API Version Clock Visualization
	Visualization goal
	Building API Version Clock
	Visualization Structure
	API Version Clock Interactive Features

	API Changes Visualization
	Visualization goal
	Building API Changes
	Visualization structure
	API Changes Interactive Features

	API Evolution Gallery
	SunRocks API Evolution
	xOpera REST API Evolution
	IPFS Pinning Service API Evolution
	Xero Projects API Evolution
	OpenFairDB API Evolution

	Discussion
	API Version Clock
	API Changes

	Related Work
	Visualizing software changes
	Sunburst Visualizations
	Consistency of Versioning and Changes

	Conclusion
	Future Work

