Decentralized Task Execution Patterns

Cesare Pautasso

10th Asian Conference on Pattern Languages of Programs,
People, and Practices (AsianPLoP 2024)

. Feb. 28 - Mar. 3, 2024
Fujisawa City, Kanagawa Prefecture, Japan

Abstract

Decentralized task execution requires to assign planning, execution and con-
trol roles and responsibilities to at least two distinct parties. These include
making decisions about “who does what when” so that one party can track
the progress and the outcome of tasks executed by another party. In this
paper we outline the design space for decentralized task execution by pre-
senting 18 different patterns, going from imperative task execution all the
way to autonomous task execution. We will distinguish how decisions about
who performs a task, what needs to be done and when to do it can be made
by different parties and how these alternative decision-making locations im-
pact the interactions between the parties responsible to plan, execute and
control the task execution. The patterns are applicable within human organi-
zations with many actors delegating or performing multiple tasks but also to
fully automated systems, e.g., distributed operating systems, intelligent au-
tonomous vehicles, blockchain-based workflow engines, or high throughput
job schedulers.

1 Introduction

There are two complementary reasons for executing tasks: achieving goals [5]
and reacting to triggering events [12]. In both cases, executing a task requires
humans or machines to perform some actions (what) taking advantage of the
skills of the available resource (who) assigned to execute the task. Given lim-
ited resources and the non-instantaneous duration of task execution, tasks
need to be efficiently scheduled (when).

Task execution is often combined with planning and control [3]: before
execution occurs, decisions about who does what when need to be made and
recorded as part of a plan; after execution occurs, its outcome needs to be
recorded so that, for example, it can be determined whether the task was

successfully executed or not and whether the execution was carried out ac-
cording to plan.

In a distributed workflow environment [4, 7] there are multiple parties in-
volved with task planning, execution and control [11]. In this paper we assume
there are at least two parties, the minimum required to break free of central-
ization [1, 9, 2] and already a sufficient number to generate the design space
of 18 different patterns we are going to explore.

In the simplest case, one party makes all the planning decisions (deter-
mines who will do what and when), while the other party will actually exe-
cute the task, reporting its outcome back to the first party, which also plays
the control role, checking that the task has been executed according to plan.
We call this imperative task execution (Fig. 1). For example, a manager breaks
down a complex request coming from above and assigns each of the resulting
tasks to each available team member. High priority requests may pre-empt
ongoing activities of the team so that tasks for a very important customer get
completed as soon as possible.

Another example would shift the planning responsibility to the party in
charge of the execution while keeping the control role separate. In this case,
all decisions about what to do and when to do it would be taken by who actu-
ally does the task execution. The task execution outcome would be reported
back to a separate party, in charge of tracking who did what when. We call this
autonomous task execution (Fig. 16). For example, entering the destination
address is sufficient for a fully autonomous car to start driving. After safely
reaching the destination, such car will drop off the passengers and even find
a parking spot nearby, all by itself.

The rest of this paper is structured as follows. In Section 2 we define the
three dimensions of the design space for decentralized task execution and
position within it the 18 patterns described more in detail in the following Sec-
tion 3. In the interest of conciseness and readability, sections of the context
and problem that are similar across multiple patterns have been uniformly
addressed in Section 2.4 and 2.5. We draw some conclusions and point out
future work directions in Section 4.

2 Design Space

We introduce the following three dimensions (Table 1) for defining the core
design space of decentralized task execution: who, what and when. For each
dimension we distinguish the location where each decision is taken: sepa-
rately from the execution party (Plan), by the same party performing the task
execution (Execute), or shared among both parties.

21 Who

The choice of who performs a task is constrained by the availability of skilled
resources suitable to execute the given task. This decision can be made
as part of the planning by associating each task with the corresponding re-
source [8], assuming that a passive resource will be ready to execute the task
at the time the task should be executed.

Alternatively, active resources can spontaneously volunteer to execute
given tasks [6]. The choice will be delayed until the latest possible moment:
the resource ready and willing to execute the chosen task will do proceed to
do so. In this case, it is critical to record the choice of who performs a task so
that, for example, credit can be given for successful outcomes or resources
can be blamed for failed executions.

Passive resources establish a push relationship with the source of tasks
to be executed, as they wait for external requests to initiate the execution.
Passive resources require to keep track of their availability and work load.
Conversely, active resources pull the tasks to be executed as they internally
determine they are ready to begin with the task execution.

2.2 What

Determining what to do defines the core of a task. Tasks can be seen as trans-
formative actions, which bring the initial state (the task pre-condition) into
the outcome of the task execution (the task post-condition). While the goal
of a task can be described in terms of such transformation, only skilled re-
sources may be entrusted with performing such task without further instruc-
tions on what exactly should be done to obtain the desired outcome from the
given starting point.

More concretely, it may even be insulting to ask an Italian chef to prepare
a pasta dish by handing over a recipe precisely describing in detail each step
on how the ingredients should be cooked. For a less experienced cook, or
a kitchen robot, however, having access to clear, correct and complete in-
structions may be the difference between a successful lunch or a failure. This
outcome will nevertheless be determined by whoever gets to taste the food,
and every customer has their own acceptance criteria.

Exactly what to do can be decided entirely as part of the planning, so that
whoever is available to do it will directly execute the given task. The decision

Where
Plan Execute Both
Who | Passive Resource (Push) Active Resource (Pull)
What Action Goal Negotiation
When Strict Schedule Eventual Completion Flexible Schedule

Table 1: Design Space Dimensions Summary

about what to do can be taken separately only if a sufficiently detailed and
precise task description can be successfully communicated and understood
by the party responsible for carrying out the task.

The decision about what to do (and how to do it) can be delayed and del-
egated entirely to the execution resource, who can be trusted to know what
to do and only needs to agree on the goal to be achieved but does not need
directions describing how to achieve it. Tasks defined in terms of goals also
open up the opportunity for optimization and improvement of how they are
executed.

The “what to do” decision can also be shared among both parties, with
the planning party offering a set of tasks that can be done and the execution
party picking which task they are willing to do. Likewise, the execution party
can propose a set of tasks they are capable of doing and the planning party
can narrow the choice of tasks to the ones which should actually be done. In
this case, tasks could be rejected without even attempting them, due to a lack
of available and sufficiently skilled resources, due to incomplete, incorrect or
unclear instructions, or simply because the task initial conditions are not yet
satisfied.

2.3 When

Given the finite and non-instantaneous duration of task execution, we also
find decisions about when tasks should be started and by when tasks should
be completed to be relevant [10]. As with the previous dimensions, also the
time dimension can be handled separately or within the task execution party.

These scheduling decisions can be made as part of the planning so that
the execution resource will be expected to immediately start running tasks
and complete them as soon as possible. In other words, time-rigid resources
should strictly follow the exact schedule received from the planner.

Alternatively, resources which know how to manage their own time can
execute tasks at their earliest convenience and eventually complete them,
fully owning the scheduling decisions.

Again, the 'when to do it’ decision can be shared among both parties, with
the planning party setting due dates for tasks within a flexible schedule and
the time-adaptable resource independently determining when to start and
finish the execution within the boundaries set by the planning party. In this
context, the control party would be responsible for sending reminders and
negotiating deadline extensions with overloaded resources.

2.4 Context

We use the active vs. passive resource (who) dimension to identify the con-
text of applicability of the pattern as the type of resource can be consid-
ered as a design constraint, limiting the choice of which pattern should be
introduced. Likewise, the strict vs flexible scheduling (when) dimension can

also be used to determine the pattern context, as it uncovers the assump-
tion about whether and to which extent resources can be expected to man-
age their own time. Finally, the ability of a resource to make decisions about
which tasks can or should be executed (what) is also an important assump-
tion that constraints the applicability of each pattern. The combination of the
three dimensions — who, when and what (using the values listed in Table 1) -
reveals a different situation from which the problem arises.

While each pattern is suitable in the corresponding context, the context
may change during long-running execution of complex tasks. For example,
autonomous driving may work on highways as long as the car is kept below
the current speed limit. When switching to city driving, a different pattern
should be applied, reducing the autonomy of the task execution resource.

2.5 Problems

In the above contexts, the following problems arise:

 How to ensure clarity in the task execution instructions? If all decisions
concerning who does what, what needs to be done, and when to do it are
already taken, the task execution instructions leave no doubt about these
aspects. If on the other hand some kind of negotiation or delayed decisions
concern any of the previous aspects, then some ambiguity and uncertainty
about which task will be executed should be expected.

+ How to assign work to a dynamic set of execution resources? A planner
with complete and up-to-date knowledge about which resources are available
can pick the most suitable one and assume it will be ready to run the given
task. When many resources come and go, it becomes increasingly difficult to
keep track of them in a centralized location.

« How to ensure tasks will be completed within a given time? How to sched-
ule tasks with hard to predict durations? The execution time of a task is af-
fected by the nature of the task itself, by the performance of the execution
resource it has been assigned to, by the input data it should process. While it
is not always possible to precisely predict the task completion time, it is pos-
sible to express some expectation about the task duration within the original
plan. This expectation can be communicated as a due date (or deadline) to
the execution resource.

 How to efficiently use every available resource? While resource may not
share the same skills, capabilities and performance level, leaving some re-
source idle may affect the overall task execution throughput.

« How to assign scheduled tasks to resources with unknown sRills? How
to assign tasks to resources with unknown skills and performance? Keeping
track of resource skills adds complexity to the task execution dispatcher, es-
pecially when facing a dynamic set of resources. Resources need to advertise
their skills and this information should be kept up to date. Likewise, assessing
the performance of resources may require to keep detailed logs of previous
task execution durations. If the resources have not yet been used, they may

be asked to run some benchmark tasks to obtain a preliminary assessment
of their performance.

« Howto share access to limited capacity among execution resources? Task
execution often requires exclusive access to resources needed to perform
each task. When such resources have limited capacity and are shared among
multiple tasks, bottlenecks may occur due to delays in acquiring locks.

 How to prioritize different tasks or goals? While resources can indepen-
dently pick which task to execute, they can still do so under some scheduling
constraint. Having a clear deadline to achieve a goal or complete a task can
help execution resources to determine the urgency of their actions. Likewise,
to protect a resource, tasks with high penalties for late delivery or missed
quality targets will be performed first, while the rest of the tasks with 'nice to
have’ requirements can be delayed.

« Howto delegate responsibility but keep accountability? When there is no
plan to follow, execution resources are fully responsible for deciding which
tasks to perform and when to do so. After all, it is easier to ask for forgiveness
rather than asking for permission. Still, even in this case, the outcome of such
decisions should be tracked to keep the execution resources accountable.

« How to balance task execution responsibilities? Resources may sponta-
neously volunteer for work or get recruited to execute tasks. In both cases
they should agree that the given task is appropriate and the corresponding
schedule is feasible.

2.6 Forces

Table 2 summarizes the consequences of selecting each pattern on the fol-
lowing six forces:

Clarity: is the task that needs to be done known in advance? is there a
clear deadline to complete it? whenever the chosen task and its deadline
result from a dynamic negotiation, which could fail, the clarity of the task
execution is lower (+/-) compared to when the task details can be determined
well in advance of its execution time (+). Unclear task execution requests
leave many doubts about what needs to be done and when to do it, decreasing
the efficiency of the task execution resource (-).

Response time: task execution takes time; its duration depends on the
task itself, but delays can result from tasks being queued waiting for resources
to become available (-). While usually the response time should be minimized,
it is also possible to introduce patterns that aim to make the response time
predictable or reduce its variance (+).

Autonomy: task execution involves decisions on whether to run a task or
skip it, about which task to execute and when to do so. These decisions can
be taken in a centralized manner, reducing the autonomy of the task execu-
tion resources (-). Still, in most patterns task execution resources may also
participate in making some (+/-) or all (+) of these decisions, raising their level
of autonomy and independence.

Forces

w2

) o— (&)

() %] s =

e (@] © [=%

= w £ E

<) > c 'S n

> 6 2 3 = ¢

= 2 o o —= 8

(%] + = e

. < <) =] [s] = e

Task ExecutionPattern | © x© < v wn o
Imperative ‘ + + - - - +
Voluntary + + +f- o+
Self-Paced - - 4o 4 - 4
Deadline-Driven + + +[- - -
Self Imposed o+ -+ -
Spontaneous +- - +[- o+ + +f-
Synchronized Y
Independent - - + + + +
Optional + + v #[- o+ -
Elective + Ty + -
Facultative - - + + ¥ -
Arbitrary - - + + . -
Lock-Stepped Y
Prioritized T
Punctual - + +f- o+ + /-
Autonomous \ - - + -+
Passive +f- + + + -
Active +- + + + -

Table 2: Forces and Consequences Overview

Scheduling Cost: planning for when tasks should be carried out requires
to keep track of which resources are available to run them. Collecting and
keeping this information about resource availability and load level centrally
can be expensive and hard to scale with a high number of resources (-). Au-
tonomous resources which volunteer to perform tasks will do so when they
are available, reducing the scheduling overhead (+). When resources can re-
ject tasks that have been scheduled to them, or may need to coordinate with
other resources, scheduling becomes more challenging (+/-).

Skill Matchmaking: assigning the task to a suitable resource capable of
successfully and correctly completing it requires to match the resource skills
with the ones required by the task. Again, collecting and keeping track of re-
source skills centrally (-) can be expensive and hard to scale with a very large
number of resources (even if such information does not often change dynam-
ically). Autonomous resources which volunteer to perform tasks should only

do so if they have the required skills (+).

Protocol Simplicity: the interaction between the task planner, the task ex-
ecution resource and the controller requires to exchange messages to trans-
mit information describing tasks, deadlines, outcomes. Push-based patterns
introduce a single task execution request message followed by a message to
report the task outcome (+). One extra message is required for pulling tasks
(+/-). In other cases, further interactions are needed to negotiate which task
can be done, or send reminders about expired deadlines (-). In the simplest
case only one message is needed to log the task execution outcome (++).

2.7 Scenario

Workflow management systems and business process execution engines will
run complex processes by decomposing them into tasks, which will them-
selves be executed by a set of automated or human resources [12].

It is possible that fully automated processes make exclusive use of auto-
mated task execution resources which are entirely dedicated to the comple-
tion of the process [4]. If these resources are a known entity in terms of their
skills and performance, plans can be made under the assumption such re-
sources will be fully available when needed. Pre-allocating such resources to
rarely run processes may be too expensive, and - in general - to increase ef-
ficiency, some tasks may be outsourced to external service providers, which
may have different availability schedules and priorities and also be shared
among multiple processes.

Human resources raise the level of autonomy even further, together with
a larger variability in terms of skills and - for certain tasks - the possibility
of dynamically agreeing both on the task content and its delivery schedule.
This is also becoming more and more applicable to smart execution resources
based on artificial intelligence. While classical software functions are called,
software services are invoked, software agents - instead - should be politely
asked to perform a task.

While we do not intentionally pre-select which patterns are suitable for
human vs. automated resources, one could roughly split them according to
whether the resources are passively accepting tasks or actively seeking new
tasks to perform, or as mentioned before, whether the resources are capable
to negotiate their task assignment.

Unless some incentive or reward is associated with the task execution re-
quest, it is not clear why the task execution resource should volunteer to per-
form a new task (if active), or accept a request to complete a task (if passive).

Having set the type of resource involved, the choice of the pattern can
be further guided by the consequences summarized in Table 2. How to make
a decision when faced with patterns that share similar quality assessments?
For example, the last two patterns “Passive” and “Active” task execution have
the same consequences, but are not interchangeable since the first assumes a
passive resource, while the second is only applicable in the context of active

resources. The same holds for “Facultative” vs. “Arbitrary”: they have the
same consequences (enhanced autonomy, minimal scheduling costs and ease
of performing the skill matchmaking) while only the first is applicable in the
context of active resources.

2.8 Design Space Overview

There are 2 (who) x 3 (what) x 3 (when) = 18 possible combinations in the design
space (Table 3). Each pattern is positioned in one of these combinations. The
order of the patterns listed in this paper attempts to traverse the space by
keeping similar patterns close.

Decision
Role

Plan

Who
Execution

Plan

What

Execution

Plan

When
Execution

Imperative

| v

| v

v

Voluntary
Self-Paced
Deadline-Driven
Self Imposed
Spontaneous
Synchronized
Independent
Optional
Elective
Facultative
Arbitrary
Lock-Stepped
Prioritized
Punctual

ENEN

SSEEENENEN

SENENENEN

NN

SSRNENEN

SN N NN

SNENEN

NN RN

Autonomous

N ENEENENEEN

Passive
Active

Role
Decision

Who

v v

Plan
What When

Execution
Who What When

NN N N N N N NENEN

SN ENIENENEEENEN

Imperative

v v

Voluntary
Self-Paced
Deadline-Driven
Self Imposed
Spontaneous
Synchronized
Independent
Optional
Elective
Facultative
Arbitrary
Lock-Stepped
Prioritized
Punctual

SNENEN

RN

SNENENEN
AN N N N N N NEN

v

ANEN

ANEN

AN

SSRNENEN

N NN

Autonomous

v

Passive
Active

v v
v v

v

NN RN ENENEN

SN RN ENENEENEN

Table 3: Decentralized Task Execution Patterns Overview

10

3 Patterns

3.1 Imperative Task Execution

Context: Passive resources do not know what to do but can do anything fol-
lowing a strict schedule.

Problem: How to ensure clarity in the task execution instructions?

Solution: Completely separate all planning decisions from the task execution.

Will Do
Do
Done
Did ———— |

Figure 1: Imperative Task Execution

The chosen task execution resource receives complete instructions on what
to do and when to do it, will perform the task following the given schedule
and report the task outcome once execution has completed (Fig. 1).

Consequences:

+ Clarity: the task execution request defines exactly what to do and when
to do it.

+ Response time: the task execution is expected to be carried out imme-
diately, as soon as possible, or at least within the given schedule.

- Autonomy: the task execution resource cannot freely choose what to do
and when to do it, not even whether to perform the task or not.

- Scheduling Cost: Information about resource availability needs to be
collected and kept up to date to avoid sending task execution requests to
unavailable or overloaded resources.

- Skill Matchmaking: Information about resource skills needs to be col-
lected and kept up to date to avoid sending task execution requests to un-
suitable resources.

+ Protocol Simplicity: The task execution request is followed by the out-
come report; this is the minimum number of messages required to inform the
task execution request about what to do, when to do it and control whether
the task has been executed according to the plan.

M

3.2 Voluntary Task Execution

Context: Active resources can do anything following a strict schedule.
Problem: How to assign work to a dynamic set of execution resources?

Solution: Resources pull the tasks whenever they are available to execute
them.

/_’ DO? WhO
ToDO —— |
[Do
L Done

/
Did

Figure 2: Voluntary Task Execution

As resources become available they ask for something to do, as soon as a
task becomes ready, they receive the corresponding task execution instruc-
tions defining what needs to be done and when to do it, perform the task
following the schedule and report the task outcome once execution has com-
pleted (Fig. 2)

Consequences:
+ Clarity: the task execution request defines exactly what to do and when
to do it.
+ Response time: the task execution is expected to be carried out within
the given schedule.
+/- Autonomy: the task execution resource can freely choose whether to
ask for a task or not, but once the task has been assigned there is no choice
about what to do and when to do it.
+ Scheduling Cost: by definition, resources actively seeking tasks are avail-
able to complete them.
+ Skill Matchmaking: As part of the request the resource can advertise
the provided skills so that a suitable task can be assigned.
+/- Protocol Simplicity: The request for a task to be executed is followed
by a response with the task description and the corresponding scheduling
information. After the task completes, its outcome is reported with the third
message.

12

3.3 Self-Paced Task Execution

Context: Passive resources can do anything at their own pace.
Problem: How to schedule tasks with hard to predict durations?
Solution: Let the execution resources drive the scheduling of tasks.

To Do \
e will Do
L Do
— Done
When
Did

Figure 3: Self-Paced Task Execution

The chosen resource will receive the task instructions but will indepen-
dently decide when to execute the task. Once the execution is completed it
will report back the task outcome (Fig. 3).

Consequences:
+/- Clarity: the task execution request defines exactly what to do but not
when to do it.

- Response time: the task execution will take place as soon as the re-
source becomes available, making it more difficult to predict when tasks will
be completed.

+/- Autonomy: the task execution resource can freely choose when to work
on the task, but once the task has been assigned there is no choice about
what to do and whether to do it or not.

+/- Scheduling Cost: resources can queue task requests and service them
whenever they can. Since resources will accept jobs even if they are busy, it
becomes difficult to keep their load balanced.

- Skill Matchmaking: Information about resource skills needs to be col-
lected and kept up to date to avoid sending task execution requests to un-
suitable resources.

+ Protocol Simplicity: The task execution request only includes the task
description, while the response should include the outcome as well as infor-
mation logging when the task was started and completed.

13

3.4 Deadline-Driven Task Execution

Context: Passive resources can do anything within a flexible schedule.
Problem: How to ensure tasks will be completed within a given time?

Solution: Give a deadline but let the execution resource decide when to start
executing the task.

To Do
by Thenx

Will Do

Missed / \' Do
Deadline C]
/'Done

Did
« Early When
e On Time
® |ate

Figure 4: Deadline-Driven Task Execution

The chosen resource will receive the task instructions with an explicit dead-
line but without a specific schedule defining when to execute the task. The
decision on when to start the task execution will be taken locally by the ex-
ecution resource. If the deadline is missed, a reminder will be sent until the
task execution completes. The outcome of the task execution will include in-
formation describing whether the task was completed early, on time or late
(Fig. 4).

Consequences:

+ Clarity: the task execution request defines exactly what to do and by
when it should be done. Deadlines can be hard or soft, defined using some
reward/penalty as a function of time.

+ Response time: the task execution is expected to be completed by the
given deadline, subject to the availability of the task execution resource.

+/- Autonomy: the task execution resource can freely choose when to work
on the task, as long as it is completed within the deadline.

+ Scheduling Cost: resources can queue task requests and prioritize them
according to their deadline.

- Skill Matchmaking: information about resource skills needs to be col-
lected and kept up to date to avoid sending task execution requests to un-
suitable resources.

- Protocol Simplicity: reminders as deadlines are approaching or missed
need to be sent.

3.5 Self Imposed Task Execution

Context: Active resources can do anything within a flexible schedule.
Problem: How to ensure tasks will be completed within a given time?

Solution: Give a deadline but let the execution resource decide when to start
executing the task.

ToDo — |
by Then [Do
Missed — | D
Deadline | Done
Did
e Early When
e On Time

® |ate
Figure 5: Self Imposed Task Execution

When available, the resource will pull the task instructions that do not in-
clude specific schedule defining when to execute the task but only a deadline
for when the results are due. The decision on when to start the task execu-
tion will be taken locally by the execution resource. If the deadline is missed,
a reminder will be sent until the task execution completes. The outcome of
the task execution will include information describing whether the task was
completed early, on time or late (Fig. 5).

Consequences:

+ Clarity: the task execution request defines exactly what to do and by
when it should be done.

+ Response time: the task execution is expected to be completed by the
given deadline, subject to the performance of the task execution resource.

+/- Autonomy: the task execution resource can freely choose when to work
on the task, running the risk of missing the deadline.

+ Scheduling Cost: resources can fetch new tasks depending on their avail-
ability.

+ Skill Matchmaking: information about resource skills can be advertised
by the resources so that tasks are sent to resources capable of processing
them.

- Protocol Simplicity: in addition to the basic task execution request and
response, also reminders need to be sent as deadlines are approaching or
missed.

15

3.6 Spontaneous Task Execution

Context: Active resources can do anything at their own pace.
Problem: How to schedule tasks with hard to predict durations?
Solution: Let the execution resources drive the scheduling of tasks.

/« Do?
To Be Done Who

(Eventually)
v 1+ — Do

()

— Done

When

Did

Figure 6: Spontaneous Task Execution

When available, the resource will pull the task instructions that neither
include any scheduling information, nor a deadline. The decision on when to
start the task execution will be taken locally by the execution resource. The
outcome is reported once the execution eventually completes (Fig. 6).

Consequences:
+/- Clarity: the task execution request defines exactly what to do but not
when it should be done.

- Response time: the task execution is expected to be eventually com-
pleted.

+/- Autonomy: the task execution resource can freely choose when to work
on exactly the given task.

+ Scheduling Cost: resources can fetch new tasks depending on their avail-
ability and can plan when to execute them based on their local schedule.

+ Skill Matchmaking: Information about resource skills can be advertised
by the resources so that tasks are sent to resources capable of processing
them.

+/- Protocol Simplicity: The response to the request for tasks to be exe-
cuted only carries the task description, while the third message reporting the
outcome should also include the start and completion timestamp of the task.

16

3.7 Synchronized Task Execution

Context: Passive resources do what they need to do following a strict sched-
ule.

Problem: How to share access to limited capacity among execution resources?
Solution: Determine the schedule but not the tasks that should be performed.

Do Something Now —
Who \

Do

()

1 Done

What

Did

Figure 7: Synchronized Task Execution

The chosen resource is scheduled for execution but the decision of what
needs to be done is left with the resource itself so that it can take full advan-
tage of the given execution time slot (Fig. 7).

Consequences:

- Clarity: the task execution only triggers the resource to start running
some task, without specifying which task.

- Response time: the task execution is expected to be completed as soon
as possible.

+/- Autonomy: each resource can freely choose which task to perform, but

it cannot refuse to work during the given time slot.

- Scheduling Cost: resources are activated following a centrally managed
schedule. Tasks are expected to fit within the given time slots.

+ Skill Matchmaking: Resources can pick tasks they are capable of suc-
cessfully completing.

+ Protocol Simplicity: the task execution request does not carry the task
description but only information about the schedule. Optionally the outcome
of the task execution can be returned.

17

3.8 Independent Task Execution

Context: Passive resources do what they need to do at their own pace.
Problem: How to ensure all available resources are used?
Solution: Let each resource do something sometime.

Do Something

Who kﬁ 5
)

| Done

What

When

Did

Figure 8: Independent Task Execution

The chosen resource is invoked to perform at their earliest convenience
some task chosen independently. When the task is eventually completed, the
outcome is reported (Fig. 8).

Consequences:

- Clarity: the task execution only triggers the resource to start running
some task, without specifying which task or when to complete it.

- Response time: the task execution is expected to be completed eventu-
ally.

+ Autonomy: each resource can freely choose which task to perform and
when to run them, but cannot refuse to work.

+ Scheduling Cost: Tasks can be queued by the resource which can inde-
pendently plan what to do and when to do it.

+ Skill Matchmaking: Resources can themselves pick tasks they are capa-
ble of successfully completing.

+ Protocol Simplicity: the task execution request simply signals the re-
source to start doing something.

18

3.9 Optional Task Execution

Context: Passive resources do only what they can following a strict schedule.
Problem: How to assign scheduled tasks to resources with unknown skills?
Solution: Let resources accept or reject tasks assigned to them.

Can Do —— |
Do
)
L Done
/ What
Did/Didn't

Figure 9: Optional Task Execution

The chosen resource is offered the choice to execute the given task within
the given schedule. The resource should decide on whether or not to accept
the given task. The decision can be made based on whether the task matches
the resource skills, performance or availability timeframe. The outcome of
the task execution includes whether the resource accepted or rejected the
task (Fig. 9).

Consequences:

+ Clarity: the task execution request defines what to do and when to do
it. It is not possible to predict whether resources will accept such requests.

+ Response time: if accepted, the task execution is expected to be com-
pleted within the given timeframe.

+ Autonomy: each resource can freely choose whether to accept the task
execution request or not.

+/- Scheduling Cost: Decisions on when to perform tasks are performed

centrally, therefore sufficient information about resource availability needs
to be kept. Since resources can refuse to run tasks, scheduling mistakes can
be corrected.

+ Skill Matchmaking: Resources can accept only tasks they are capable of
successfully completing.

- Protocol Simplicity: the response needs to report whether the task was
accepted and completed or rejected. An additional message could be intro-
duced to signal that a task has been accepted.

19

310 Elective Task Execution

Context: Active resources do only what they can following a strict schedule.
Problem: How to assign scheduled tasks to resources with unknown skills?
Solution: Let resources propose tasks that can be assigned to them.

5
— Doz 1 who
CanDo —— |
™ Do
L Done
What What

When

Did/Didn't

Figure 10: Elective Task Execution

When available, the resource proposes possible tasks that could be exe-
cuted. Ataskis agreed upon and sent back to the resource to complete within
a certain schedule. The resource may reject the task due to scheduling con-
flicts (Fig. 10).

Consequences:

+ Clarity: the tasks offered by the resource need to be identified without
ambiguity so that they can be chosen by the planner.

+ Response time: if accepted, the task execution is expected to be com-
pleted within the given timeframe.

+/- Autonomy: each resource can freely choose when to ask for more work
and whether to accept new tasks or not. However, they need to complete the
task within the given time slot.

+ Scheduling Cost: When available, resources can peek into the central
task queue for work and determine whether they will be able to meet the
schedule associated with each task.

+ Skill Matchmaking: Resources can accept only tasks they are capable of
successfully completing.

- Protocol Simplicity: the response needs to report whether the task was
accepted and completed or rejected. An additional message could be intro-
duced to signal that a task has been accepted.

20

311 Facultative Task Execution

Context: Active resources do only what they can at their own pace.

Problem: How to assign tasks to resources with unknown skills and perfor-
mance?

Solution: Let resources schedule tasks that can be assigned to them.

/ Do? Who
CanDo — |
™ Do
L Done
When
Did/Didn't

Figure 11: Facultative Task Execution

When available, the resource proposes possible tasks that could be exe-
cuted. After a task is agreed upon, the resource will eventually complete it.
The negotiation on which task to do may fail (Fig. 11).

Consequences:

- Clarity: the actual task is dynamically negotiated starting from a set of
possible tasks.

- Response time: if the negotiation is successful, the task is eventually
completed. Carrying out the negotiation delays the start of the task execution.

+ Autonomy: each resource can freely choose when to offer to work and
when to perform the agreed upon task. The choice of what to do is con-
strained.

+ Scheduling Cost: When available, resources can propose to perform
some tasks at their earliest convenience.

+ Skill Matchmaking: Resources propose to perform tasks they are actu-
ally capable of successfully completing.

- Protocol Simplicity: messages exchanged during the negotiation phase
need to carry information about a set of possible tasks. The outcome of the
negotiation may fail.

21

3.12 Arbitrary Task Execution

Context: Passive resources do only what they can at their own pace.

Problem: How to assign tasks to resources with unknown skills and perfor-
mance?

Solution: Let resources schedule tasks that can be assigned to them.

Can DO ———— |
Who
Do
L Done
When
Did/Didn't

Figure 12: Arbitrary Task Execution

The chosen resource is offered one or more possible tasks to execute. Ifa
suitable task is selected, it will eventually be completed. The negotiation on
which task to do may fail (Fig. 12).

Consequences:

- Clarity: the actual task is dynamically negotiated starting from a set of
possible tasks.

- Response time: if the negotiation is successful, the task is eventually
completed. Carrying out the negotiation delays the start of the task execution.

+ Autonomy: after receiving the invitation to pick some task, each re-
source can freely choose which task to perform among the possible ones and
when to perform the agreed upon task.

+ Scheduling Cost: Resources can plan when to perform the task they
have been requested to execute at their earliest convenience.

+ Skill Matchmaking: Resources select tasks they are actually capable of
successfully completing.

- Protocol Simplicity: messages exchanged during the negotiation phase
need to carry information about a set of possible tasks. The outcome of the
negotiation may fail.

22

313 Lock-Stepped Task Execution

Context: Active resources do what they need to do but can follow a strict
schedule.

Problem: How to share access to limited capacity among execution resources?
Solution: Determine the schedule but not the tasks that should be performed.

Now?
~ Who

Time to Do

Something | po

()

L Done

What

Did

Figure 13: Lock-Stepped Task Execution

When available, the resource asks for the next available time window. It
performs the independently chosen task following the given schedule and
reports the task outcome (Fig. 13)

Consequences:

- Clarity: while the window of opportunity is known, the actual task will
be selected dynamically by the active resource.

+ Response time: the task must complete within the given time window.

+/- Autonomy: while the execution time window is centrally managed, the
decision of executing a task and the choice of which task to execute is taken
independently by the resource.

+ Scheduling Cost: All coordination between task execution resources
concerning when they can perform the tasks is managed centrally, making
it easier to control access to a shared resource with limited capacity.

+ Skill Matchmaking: Resources independently select tasks they are ac-
tually capable of successfully completing.

+ Protocol Simplicity: messages exchanged only need to carry informa-
tion about the time slot assigned to the resource asking when it can perform
its work.

23

314 Prioritized Task Execution

Context: Passive resources do what they need to do within a flexible schedule.
Problem: How to prioritize different goals?
Solution: Set a deadline but do not constrain what needs to be done.

Who Do Something
by Then

Do

-

L Done

/ What
Did

o Farly When

® On Time
® | ate

Figure 14: Prioritized Task Execution

The chosen resource is given a deadline to achieve a certain goal. The
decision on what to do and when to do it is performed locally and the task
execution outcome is reported and evaluated against the deadline (Fig. 14).

Consequences:

+ Clarity: the goal and the time to achieve it should be specified in the task
execution request, leaving the specialized decision on what task to execute
to achieve the goal to the execution resource.

+ Response time: if possible, the goal must be achieved within the given
time window.

+/- Autonomy: the resource can pick the correct task needed to achieve the
goal and plan the schedule to complete it before the given deadline.

+ Scheduling Cost: While the deadline set needs to be achievable, the
execution resource can delay the start of the execution to give priority to
other more urgent or more important tasks.

- Skill Matchmaking: The chosen resources should know how to achieve
the given goal.

+ Protocol Simplicity: the task execution request only needs to carry in-
formation about the time slot assigned to the resource, while the response
should identify the task that was executed.

24

315 Punctual Task Execution

Context: Active resources do what they need to do within a flexible schedule.
Problem: How to prioritize different tasks?

Solution: Set a deadline but do not constrain what needs to be done.

Do When?
/_’ WhO

bo —]
by Then [Do

L Done
/ What

Did

o Farly When
® On Time
® | ate

Figure 15: Punctual Task Execution

When available, the resource is informed about the deadline to complete
a proposed task. The decision on what to do and when to do it is performed
locally and the task execution outcome is reported and evaluated against the
deadline (Fig. 15).

Consequences:

- Clarity: it should be possible to dynamically estimate the time by when
any possible task should be completed.

+ Response time: if possible, the goal must be achieved within the given
time window.

+/- Autonomy: after proposing the task, the resource is expected to plan
the schedule to complete it before the given deadline.

+ Scheduling Cost: While the deadline set needs to be achievable, the
execution resource can delay the start of the execution to give priority to
other more urgent or more important tasks.

+ Skill Matchmaking: Resources propose tasks they are actually capable
of successfully completing.

+/- Protocol Simplicity: the task execution reply only needs to carry infor-
mation about the time slot assigned to the resource, while the final outcome
report should identify the task that was executed.

25

316 Autonomous Task Execution

Context: Active resources do what they need to do at their own pace.
Problem: How to delegate responsibility but keep accountability?
Solution: Report and log the task execution outcome.

Who

Do

()

| Done

What

When

Figure 16: Autonomous Task Execution

When available, the resource makes all task execution and scheduling de-
cisions autonomously. The task execution outcome is reported and logged so
that a trace is kept about who did what when (Fig. 16).

Consequences:

- Clarity: what was done by whom and when it happened becomes known
only after the fact.

- Response time: there are no constraints set on the completion time of
any task.

+ Autonomy: the execution resource is fully in charge regarding what to
do and when do it.

+/- Scheduling Cost: While the execution resource can independently sched-

ule its tasks, coordination among multiple resources becomes challenging.

+ Skill Matchmaking: Resources select tasks they are actually capable of
successfully completing.

++ Protocol Simplicity: Only a log of completed tasks and their outcome
needs to be kept.

26

317 Passive Task Execution

Context: Passive resources only do what they can within a flexible schedule.
Problem: How to balance task execution responsibilities?
Solution: Negotiate both what to do and when to do it.

Can Do
by Then |
Do
L Done
/ What
Did/Didn't
e Farly When
e On Time
® |ate

Figure 17: Passive Task Execution

The chosen resource receives an offer to perform a task by the given dead-
line. The resource may accept the task and autonomously schedule it for ex-
ecution or reject the task as it does not match its skills or does not fit in the
existing schedule. The outcome is reported and evaluated against the dead-
line (Fig. 17).

Consequences:
+/- Clarity: while the task and its time window are known in advance, they

can be accepted or rejected by the execution resource at run time.

+ Response time: if possible, the task must be completed within the given
time window.

+ Autonomy: after receiving the task execution request, the execution re-
source can reject it (e.g., the deadline is not realistic).

+ Scheduling Cost: If accepted, the task can be independently scheduled
within the given time window.

+ Skill Matchmaking: Resources accept only tasks they are actually capa-
ble of successfully completing.

- Protocol Simplicity: The messages need to carry task definitions to-
gether with their deadlines and the protocol should support both acceptance
and rejection of tasks.

27

318 Active Task Execution

Context: Active resources only do what they can within a flexible schedule.
Problem: How to balance task execution responsibilities?
Solution: Negotiate both what to do and when to do it.

/ Do? Who

CanDo—-— |

by Then

™ Do

L Done
/ What

Did/Didn't
e Farly When
e On Time

°* |ate

Figure 18: Active Task Execution

When available, the resource proposes to perform a task. The resource
is given a deadline to complete the task and autonomously schedules it for
execution. The outcome is reported and evaluated against the deadline. The
negotiation on which task to do may fail (Fig. 18).

Consequences:
+/- Clarity: while the task and its time window are known in advance, they

can be accepted or rejected by the execution resource after fetching a new
task.

+ Response time: if possible, the task must be completed within the given
time window.

+ Autonomy: after retrieving the next task, the execution resource can
reject it (e.g., its deadline is not realistic).

+ Scheduling Cost: If accepted, the task can be independently scheduled
within the given time window.

+ Skill Matchmaking: Resources accept only tasks they are actually capa-
ble of successfully completing.

- Protocol Simplicity: The messages need to carry task definitions to-
gether with their deadlines and the protocol should support both acceptance
and rejection of tasks.

28

4 Conclusion

Decentralization of task execution opens up the opportunity to explore where
decisions on who does what when should be taken. As opposed to centrally
planning how goals should be achieved and unilaterally determining how
to schedule, perform and track the corresponding task execution, we have
shown that there is an entire spectrum of 18 patterns between imperative
and autonomous task execution, i.e., representing many valid alternatives to
choose from between fully centralized and decentralized task execution.

To keep the complexity of the design space under control we did not dis-
cuss how data is exchanged so that it can flow between tasks, another dimen-
sion in which decentralization can have a major impact. Likewise a hybrid
option between active and passive resources may be considered as well. The
decision of how to decompose tasks into their constituent sub-tasks can also
offer additional opportunities for further (recursively) decentralizing their ex-
ecution.

Acknowledgements

The author would like to thank the AsianPLoP 2024 writers’ workshop partic-
ipants for their invaluable feedback: Anja Bertels, Y C Cheng, Martin Gutsche,
Kiro Harada, Ali Shaukat, Joseph Yoder.

The author would also like to thank Hassan Atwi, Tom Lichtenstein and
Mathias Weske for their inspiring discussions in the context of the SNFS funded
project no. 196958 "Flexible Choreographies in Multi-chain Environments“ (FC4MC).

References

[1] Baran, P: On Distributed Communications: I. Introduction to Distributed
Communications Networks. RAND Corporation, Santa Monica, CA (1964).
https://doi.org/10.7249/RM3420

[2] Evermann,)., Kim, H.. Workflow management on proof-of-work
blockchains: Implications and recommendations. SN Computer Science
2, 1-22 (2021)

[3] Hofstede, G.. The poverty of management control philoso-
phy. The Academy of Management Review 3(3), 450-461 (1978),
http://www. jstor.org/stable/257536

[4] Jablonski, S., Schamburger, R., Hahn, C,, Horn, S, Lay, R., Neeb, J,
Schlundt, M.: A comprehensive investigation of distribution in the con-
text of workflow management. In: Proc. 8th International Conference on
Parallel and Distributed Systems, ICPADS 2001. pp. 187-192 (2001)

29

(5]

6]

[7]

(8]

[9]

[10]

[11]

[12]

Laudon, K.C., Laudon, J.P.. Management information systems: Managing
the digital firm. Pearson (2004)

Mengistu, TM., Che, D. Survey and taxonomy of vol-
unteer computing. ACM Comput. Surv. 52(3) (July 2019),
https://doi.org/10.1145/3320073

Muth, P., Wodtke, D., Weissenfels,)., Dittrich, A.K., Weikum, G.: From cen-
tralized workflow specification to distributed workflow execution. Journal
of Intelligent Information Systems 10, 159-184 (1998)

Russell, N., Van Der Aalst, W.M., Ter Hofstede, A.H., Edmond, D.: Work-
flow resource patterns: Identification, representation and tool support.
In: Proc. 17th International Conference on Advanced Information Systems
Engineering, CAISE 2005. pp. 216-232. Springer (2005)

Schneider, N.: Decentralization: an incomplete ambition. Journal of cul-
tural economy 12(4), 265-285 (2019)

Shirazi, B.A., Kavi, K.M., Hurson, A.R.: Scheduling and load balancing in
parallel and distributed systems. Wiley - IEEE computer society press
(May 1995)

Siggelkow, N., Levinthal, D.A.: Temporarily divide to conquer: Central-
ized, decentralized, and reintegrated organizational approaches to ex-
ploration and adaptation. Organization science 14(6), 650-669 (2003)

Weske, M.: Business Process Management: Concepts, Languages, Archi-
tectures. Springer, 3rd edn. (2019)

30

