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ABSTRACT
Software performance testing is an important activity to
ensure quality in continuous software development environ-
ments. Current performance testing approaches are mostly
based on scripting languages and framework where users im-
plement, in a procedural way, the performance tests they
want to issue to the system under test. However, existing so-
lutions lack support for explicitly declaring the performance
test goals and intents. Thus, while it is possible to express
how to execute a performance test, its purpose and appli-
cability context remain implicitly described. In this work,
we propose a declarative domain specific language (DSL) for
software performance testing and a model-driven framework
that can be programmed using the mentioned language and
drive the end-to-end process of executing performance tests.
Users of the DSL and the framework can specify their per-
formance intents by relying on a powerful goal-oriented lan-
guage, where standard (e.g., load tests) and more advanced
(e.g., stability boundary detection, and configuration tests)
performance tests can be specified starting from templates.
The DSL and the framework have been designed to be inte-
grated into a continuous software development process and
validated through extensive use cases that illustrate the ex-
pressiveness of the goal-oriented language, and the powerful
control it enables on the end-to-end performance test execu-
tion to determine how to reach the declared intent.
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1 INTRODUCTION AND MOTIVATION
The Software is pervasively assembled across different busi-
nesses, by professional figures with different skills [22] and

Permission to make digital or hard copies of all or part of this work
for personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advantage
and that copies bear this notice and the full citation on the first page.
Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permis-
sions from permissions@acm.org.
ICPE ’18, April 9–13, 2018, Berlin, Germany
© 2018 Copyright held by the owner/author(s). Publication rights
licensed to the Association for Computing Machinery.
ACM ISBN 978-1-4503-5095-2/18/04…$15.00
https://doi.org/10.1145/3184407.3184417

with often-changing technologies [9]. Agile software develop-
ment is widely used nowadays as a process to conceive, de-
sign, develop and operate complex software systems. Agile
practices aim at reaching software deployment to production
fast and often, to collect feedback from the users to be used
in the next release of the same software, enabling continuous
software development (CSD) [23].

To guarantee the quality of the software released to pro-
duction, software development pipelines automation, and
pervasive automated testing are vital for succeeding in re-
leasing reliable software [12], so that people involved in the
process can get continuous feedback. Performance testing
is a kind of testing activity performed within development
pipelines and by its complex nature, requires expertise to
define performance tests, configure and manage the load in-
frastructures, the automated deployment of the software in
different configurations, and the performance data collection
and analysis. Many tools have been proposed to help the pro-
fessional figures involved in the CSD process to implement
performance testing, as for example to specify and execute
performance tests (e.g., JMeter1), managing the load infras-
tructure (e.g., Faban2), to automate the deployment of the
system under test (SUT) (e.g., Docker3), and comprehensive
solutions to help users in the entire end-to-end performance
test execution and results’ analysis (e.g., DataMill [14]).

1.1 Context and Motivation
In this paper we focus in particular on CSD lifecycles, where
the developed software is represented by (Micro)services, and
we look at automating the execution of performance tests
issued against the APIs, particularly REST APIs, exposed
to the users. The main characteristics of this context are:
(1) professional figures having diversified roles and heteroge-
neous performance knowledge [22], with control and respon-
sibility on part of the developed services throughout their
entire lifecycle from development to production; (2) paral-
lel development of different services realizing the developed
software, relying on one or more project repositories, and
different branches [23] to version code and related artifacts;
(3) continuous evolution of the developed software, by lever-
aging users’ feedback and production data about application
behavior; (4) automation of release pipelines, including code
quality checks, build, test, packaging, delivery and in some
cases deployment as well [23].

As argued by us [8], and by other researchers (e.g., [4]), ex-
ecution of performance tests should be automated, flexible,

1http://jmeter.apache.org, last visited April 11, 2018
2http://faban.org, last visited April 11, 2018
3https://www.docker.com, last visited April 11, 2018
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context- and business-aware, so that it can cope with the ve-
locity introduced by modern life-cycles and contribute to the
validation of the released software quality. Usually in CSD,
users define performance tests that they might want to con-
tinuously see working, and that they automate in terms of
automating the analysis and the process to collect the data
for that analysis. Then they define another set of perfor-
mance tests that is not always continuously executed, based
on a model they have (i.e., requirements, design, implemen-
tation diagrams, etc.) to explore the system, learn from it
and maybe decide to automate other analyses to be able to
communicate derived information in a better way.

While for most of the available tools and solutions, users
define performance tests using scripts or code, we argue that
in this context a declarative model-driven approach [8], ex-
posed to the users by means of a domain specific language
(DSL), could help to control the end-to-end process of execut-
ing performance tests, by making the purpose and applica-
bility contexts of defined performance tests explicit. Empow-
ered by the DSL, different professional figures can express
their performance intents in terms of performance goals, for
example, defined by more expert performance people. They
can then rely on an extensible framework that can automate
and control the end-to-end execution of tests, by following
the directives specified in the model behind the DSL defini-
tion.

1.2 Requirements
Given the described context, we identified the following re-
quirements the proposed approach embraces:

(1) declarative specification of performance tests, perfor-
mance goals and SUT deployment and configuration;

(2) automated and model-driven execution of the end-to-
end performance test lifecycle;

(3) extensibility of the DSL and the automation infrastruc-
ture, to cope with evolving needs in CSD, and custom
requirements of different contexts and applications.

We propose two main contributions to enhance the state of
the art in this context. The first contribution is a declarative
DSL for performance testing (Sect. 3), allowing the users to
declare the goal of the specified performance test, as well
as control the deployment configuration of the SUT. The
second one is a model-driven framework (Sect. 4) that can
be programmed using the mentioned DSL, and automate the
end-to-end execution of performance tests, by executing all
the activities that are needed to answer to the performance
intent of the user, declared as a goal of the performance test.

A declarative approach to performance tests execution,
implemented in a DSL and a framework, to specify the in-
tent of performance tests, and to describe the SUT deploy-
ment and configuration enables the production of shared
artifacts that can be exchanged among development team
members with different expertise and profiles. We opted for
a declarative DSL, so that users can rely on a domain model
closer to the performance testing terminology, and the code
that defines how to execute the test is actually built into

the framework that represents the runtime of the proposed
DSL. We do not want the users to necessarily care about
how the actual performance test execution is implemented,
but we want them to be able to define performance activi-
ties and control the execution of the performance tests. By
reducing the needs for the users to write code, the respon-
sibility of translating the business domain into a program
shifts from the programmer to the interpreter of the DSL.
This has the benefit that the translation is consolidated in
one single point (the interpreter of the DSL) and can be
verified or even proven to be correct. By abstracting, the ex-
pressiveness of the language compared to imperative code is
reduced, because only specific concepts are integrated into
the DSL. For this reason we made the DSL, and the model-
driven framework actually driving the execution of perfor-
mance tests, open and extensible to new use cases and dif-
ferent needs.

The rest of the paper is structured as follows: in Sect. 2 we
present related work on declarative performance testing and
DSLs, in Sect. 3 we present the proposed declarative DSL, in
Sect. 4 the model-driven framework based on the same and
in Sect. 5 use cases in defining and executing performance
tests based on the presented DSL and the framework, in
Sect. 6 we conclude the paper and briefly present planned
future work.

2 RELATED WORK
Declarative Software Performance Testing - Declar-
ative software performance engineering, part of which is also
related to performance testing, has been presented as part
of the DECLARE project4 by Walter et al. [20]. The DE-
CLARE project “envisions to reduce the current abstraction
gap between the level on which performance-relevant con-
cerns are formulated and the level on which performance
evaluations are actually executed”, thus dealing with the
challenges related to the heterogeneity in performance exper-
tise of software practitioners. The DECLARE project focuses
mainly on enabling the possibility of declaratively querying
performance knowledge that has been collected and mod-
elled by other systems, while the focus of our work is in
applying declarative approaches for performance test speci-
fication and automated execution. In this context, Wester-
mann [21] present the concept of goal-driven performance
testing, mainly related to smart exploration of the perfor-
mance spaces for different configurations of software systems
(i.e., the space described by all the possible combinations of
the configuration variables). This is realized with a DSL,
and a runtime framework for automatic performance test
execution. The main difference compared to our approach
is the context of application, and the focus of the declara-
tive goal-driven definitions, than in our case are related to
performance testing of container-packaged (Micro)services

4http://www.dfg-spp1593.de/declare, last visited April 11, 2018
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within CSD lifecycles, and open to answer different perfor-
mance intents users might have. Other relevant work propos-
ing both a DSL and a framework, are Cloud Work Bench [17],
Crawler [5], CloudPerf [13] and Jagger5, tools for benchmark-
ing the performance of the services offered by cloud providers.
The first three tools propose a declarative DSL tailored to
Cloud benchmarking, then targeting a different domain than
the one proposed in the context of this work. Although Jag-
ger’s DSL allows users to declaratively specify success cri-
teria of tests, in our goal-oriented approach we additionally
support describing the intent of performance tests.

Other related work propose specific approaches to answer
different kinds of performance intents, as for example ca-
pacity planning [18], and performance optimization in the
presence of constraints [6]. We consider these techniques as
declarative approaches to performance testing, because the
discussed solutions target specific performance goals to be
answered in a (semi)-automated way.

Performance Testing Tools in CSD - Experimenta-
tion and continuous automated checking of performance qual-
ity criteria, are important activities in CSD environments.
Performance experimentation, and experimentation in gen-
eral, is discussed in different research and industry work as
an important activity in continuous development, e.g., by
Google with Vizier [11], AutoPerf [1], DataMill [14] and the
approaches by Omar et al. [15], Westermann [21] and Cloud
Work Bench [17]. They propose languages and framework to
help users simplifying exploratory test definition, automat-
ing performance test execution, and ensuring rigorous per-
formance data analysis. The solution we propose builds on
existing tools, and integrates them to achieve full control
over the entire performance testing lifecycle with a declara-
tive DSL.

Different solutions have been proposed for continuous au-
tomated checking of performance quality criteria. Blazeme-
ter6 integrates standard performance testing tools in CSD,
by providing the load infrastructure, and a software as a
service platform on which automatically schedule and ex-
ecute performance tests. Other tools rely on performance
management platforms7 to collect performance metrics and
validate them over time, others apply live testing [10, 16]
for incremental roll-out of new versions of (Micro)service ap-
plications according to their performance behaviour. Others
continuously check for regressions of different software per-
formance metrics [3, 19] after every set of relevant commits.
Overall the plethora of solutions is rich and diversified, and
in this work we discuss how to integrate them at a higher
level of abstraction with a declarative DSL allowing the user
to specify their performance intent, and then automate them
in a framework for automating the goal-driven end-to-end
process of performance test execution.

5https://jagger.griddynamics.net, last visited April 11, 2018
6Blazemeter - https://www.blazemeter.com, and Taurus - http://
gettaurus.org, last visited April 11, 2018
7http://rigor.com, last visited April 11, 2018

3 DECLARATIVE PERFORMANCE DSL
The DSL is used to specify the intent of performance tests
and control their entire end-to-end execution process in a
declarative manner, and it is particularly tailored to container-
packaged (Micro)service systems. In general a DSL for pro-
viding the specification of goal-driven performance tests should
provide at least the specification of load functions, workloads,
simulated users, test data, test bed management and analy-
sis of performance data [2, 21]. Our DSL provides the men-
tioned features, and adds a goal-oriented, and declarative
specification of performance intents as well. The declarative
nature of the DSL, enables the users to start from provided
templates for defining performance tests. They can then up-
date the tests according to changing requirements, or dispose
them in favour of new specifications. This is possible with-
out the need of rebuilding the test or changing code, but by
manually or programmatically updating its specification.

3.1 Meta-Model: Overview

Test
name: String
description: String

Goal
type: GoalType

Test Configuration

Load Function
users: Int
ramp-up: Int
steady-state: Int
ramp-down: Int

Termination Criteria

Workload Sut
name: String
version: String

Data Collection
only_declared: Boolean

1

1

0..1

0..1

1 0..1

Quality Gates

0..1

1

Figure 1: DSL: The Test Meta-Model

The main entity in the language is test, which as shown in
Fig. 1 groups together the workload, the sut, the data collec-
tion and the test configuration. As part of the configuration,
users can indicate the goal, the corresponding load function
as well as the criteria to drive the automated execution of
the test needed to achieve the goal: termination criteria to
control conditions to declare the test completed, and qual-
ity gates to determine if wanted quality criteria have been
achieved or not by the SUT.

Additionally, the user can specify other core performance
concepts, such as: 1) the workload, in terms of named sets of
operations as well as parameters about the way to mix those
sets of operations together with the inter operations timing
specification; 2) details on the SUT such as the target end-
point of the test, deployment time configuration settings and
specifications about the machines where to deploy the differ-
ent services realizing the SUT. The actual deployment de-
scriptor of the SUT can be specified using the Docker Cloud
and Compose standards8; 3) data collection services to en-
able, so that client-side and server-side performance data
can be collected.

8Docker Cloud - https://docs.docker.com/docker-cloud/apps/stack-
yaml-reference/ and Docker Compose - https://docs.docker.com/
compose/compose-file/, last visited April 11, 2018
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name: The test name
description: The test description # Optional
configuration:

goal:
load_function: # Optional IF specified in goal
termination_criteria: # Optional
quality_gates: # Optional

sut:
workload:
data_collection: # Optional

Listing 1: DSL: The Test YAML Format Overview

Goal
type: GoalType

«enumeration»
GoalType

LOAD
EXHAUSTIVE_EXPLORATION
STABILITY_BOUNDARY

Exploration0..1

Observe

1

Figure 2: DSL: The Goal Meta-Model
In Listing 1 we present the actual format, omitting some

details, of the DSL the user is writing to specify a test us-
ing the YAML9 syntax, that is both human and machine
readable.

3.2 Meta-Model: Main Entities
Goal - The goal is part of the test configuration and is used to
declaratively specify the users’ performance intent by relying
on given performance goals (Fig. 2), such as executing a
load test or exploring the performance or the stability of the
application in a given configuration space.

We defined a taxonomy of goals [8], where we distinguish
goals by their different levels of abstractions: meta goals
(e.g., comparing the performance of different systems using a
benchmark), goals (e.g., capacity planning, stability bound-
ary testing) and base goals (e.g., load test, configuration
test). The current main focus of the DSL is to support stan-
dard performance tests, such as load test, and exploratory
performance testing, thus the goal types currently provided
by the language are the load, and exhaustive_exploration
(similar to configuration test) base goals, and the stability_-
boundary goal. We decided to support exploratory testing, be-
cause we, and other researchers [10, 11], argue that in CSD,
with continuous evolution and feedback, it is very impor-
tant to be able to explore performance of different system’s
configuration or alternative solutions at any moment in the
development lifecycle, to gain insights on the behaviour of
the application.

Depending on the selected goal it might be necessary to
specify also other information to automate the test execu-
tion, e.g., adding an exploration strategy. The load goal is a
standard load test and does not require additional configura-
tion. The exhaustive_exploration and the stability_boundary

9http://www.yaml.org, last visited April 11, 2018

ExplorationSpace

Service
resources: Resources

configuration: List<ServiceConfiguration>

Load Function
users: Int

ramp-up: Int

steady-state: Int

ramp-down: Int

Resources
memory: RAM

cpu: CPU

Service Configuration
variable: String

values: List<String>

«enumeration»

ExplorationStrategySelectionType
ONE_AT_A_TIME

RANDOM

STABILITY_BOUNDARY_FIRST

Exploration Strategy
selection: ExplorationStrategySelectionType

name
0..N

0..1

1

Exploration

1

Stability Criteria0..1

Figure 3: DSL: The Exploration Meta-Model

goals execute multiple experiments by exploring the explo-
ration_space according to some exploration_strategy (e.g.,
randomly or with a binary search). For the stability_boundary
it is also required to specify the stability_criteria, where
the user can define stability conditions using the same se-
mantics of quality gates, presented later in this section.

Exploration Space - The exploration_space defines the vari-
ables that can be changed between experiments and their
possible values (Fig. 3). The currently available variables can
be used for varying the load function, and the configuration
of one or more services realizing the SUT or the resources
allocated to them. The user can directly specify the values
to set over different experiments, or specify ranges to navi-
gate with given step functions, that can, for example, apply
addition, subtraction, multiplier, division and power for a
numeric variable.

We support changes in the load function by number of
users, and the ramp-up, steady-state and ramp-down. This is
useful when the goal is to explore how the system behaves un-
der different loads. The configuration through environment
variables consists of any variable-values pair specified by the
user. For resources we currently support setting the CPU and
RAM allocation, however, these can be extended to other re-
sources supported by the Docker Cloud and Compose stan-
dards, e.g., i/o speed as well as other container orchestra-
tion and management frameworks (e.g., Kubernetes10). The
user decides how to traverse the exploration_space, by se-
lecting an exploration_strategy. Each strategy determines
the order in which different experiments are executed to
achieve the goal of the test. Currently supported are the
one-at-a-time strategy, that select the experiment one af-
ter the other following the different dimensions of the ex-
ploration_space, random strategy that schedules the experi-
ments in random order, and stability-boundary-first strat-
egy that uses a binary search to trace the stability boundary.
Other strategies can rely on a statistical sampling approach
to reduce the number of experiments required to observe the
performance over a representative subset of the exploration
space [21].

Termination Criteria - The exploration, and in general a
performance test execution might incur into failures, and last
for a long amount of time. Thus the termination_criteria are
10https://kubernetes.io, last visited April 11, 2018
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Termination Criteria

Test Termination Criteria
number_of_experiments: Int
max_time: Time
max_failed_experiments: Percent

Experiment Termination Criteria
number_of_trials: Int

0..1

0..1

Service Termination Criteria
max_number_of_trials: Int
confidence_interval_metric: ServiceMetric
confidence_interval_value: Float
confidence_interval_precision: Percent

Workload Termination Criteria
max_number_of_trials: Int
confidence_interval_metric: WorkloadMetric
confidence_interval_value: Float
confidence_interval_precision: Percent

0..1

0..1

Figure 4: DSL: The Termination Criteria Meta-Model

used to determine when the test execution process can be
considered to be completed (Fig. 4). The termination criteria
apply to different entities, namely: the entire test and the
navigation of the exploration space, and the different trials
of the experiments, i.e., repeated experiment executions used
to collect more precise measurements and to cope with the
intrinsic variability of performance, that get executed as part
of the test.

The currently supported test termination criteria are: a
fixed limit on the number of experiments to be executed, the
maximum amount of test running time (max_time), and the
maximum allowed number of experiments marked as failed
(using a percentage of the overall number of experiments
to be executed) without providing any result (e.g., in case
of unexpected errors in the deployment of the SUT or the
impossibility of issuing the workload) or due to failures in
passing the quality gates.

We support two different experiment termination criteria,
which control the number of trials. Thus we support the
possibility to statically specify a fixed upper bound on the
number of trials to be executed for each experiment, or a
target confidence interval (c.i.) to be achieved for one metric
of interest on a workload or a service at a given precision,
and thus dynamically determine the number of trials to be
executed to reach the given c.i. up to the given maximum
number of trials. In general, if multiple termination criteria
are specified, they are all applied and the test/experiment
terminates as soon as one criteria is satisfied.

The final state of the test/experiment depends on whether
the termination criteria corresponds to describing a condi-
tion under which the goal has been reached or a condition
that represents the impossibility of reaching the goal. For
example, if the goal is to perform a given number of experi-
ments or trials, reaching the number_of_experiments, num-
ber_of_trials will result in a successful test or experiment.
However, if it was not possible to reach the required confi-
dence interval and instead the upper limit on the number of
trials was reached, this results in the failure of the experi-
ment. Likewise, if the duration exceeds the max_time or the

Observe «enumeration»
ServiceMetric
AVG_RAM
AVG_CPU
...

«enumeration»
WorkloadMetric

AVG_RESPONSE_TIME
THROUGHPUT
AVG_LATENCY
...

Workload Observe
workload_name: List<WorkloadMetric>
operation_name: List<WorkloadMetric>

0..N

Service Observe
service_name: List<ServiceMetric>

0..N

Figure 5: DSL: The Observe Meta-Model

number of failures reaches the max_failed_experiment limit,
the corresponding test will be marked as failed.

Observe - The performance metrics of interest for the test
are enumerated within the observe entity (Fig. 5). Metrics
can be observed on the client-side and the server-side, by
relying on the collected performance data.

Client-side metrics can be observed on the entire workload
and on its operations. Some available metrics are: response
time, latency, throughput for each single operation and for
the entire workload, for each trial and aggregated at exper-
iment level, as well as time series over the entire load func-
tion time. Server-side metrics can be observed on specific
services realizing the SUT, and some available metrics are
related to: RAM, CPU, IO, network utilization. SUT spe-
cific metrics can be defined as well, and integrated in the
framework. Other metrics can be computed on top of logs
collected from the SUT. On all the metrics we also make
available descriptive statistics, and statistical tests to check
for the homogeneity of the collected data (e.g., coefficient of
variation11, and Levene’s test12), that is for example useful
to validate whether the collected data over multiple trials of
the same experiment exposes the same behaviour. The user
can observe specific metric (e.g., throughput) or statistics
(e.g., average CPU utilization), or the entire set of metric
and statistics computed on an entity (e.g., all the metrics
and descriptive statistics of CPU).

Quality Gates - Quality gates help with integrating the
tests in CSD, by enabling the possibility to express perfor-
mance requirements for the SUT, for the current defined test.
They declare which are the successful and failure conditions
of a test so that these can be checked automatically (Fig. 6).

They currently include success conditions (i.e., conditions
that lead to mark a test as successful) on: all the observ-
able metrics, and relative aggregated statistics, on any of
the services realizing the SUT, and on the workload issued
to the system, to validate that the issued workload satisfied
the specified requirements. The conditions (one of >, <, >=,
<=, =) that can be specified on the metrics allow compar-
ing the value of a metric or a statistic with a static value,
11http://www.ats.ucla.edu/stat/mult_pkg/faq/general/coefficient_
of_variation.htm, last visited April 11, 2018
12http://www.itl.nist.gov/div898/handbook/eda/section3/eda35a.
htm, last visited April 11, 2018
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Quality Gates

Workload Quality Gates

ServiceMetric Quality Gates
gate_metric: ServiceMetric
condition: GateCondition
gate_threshold: String OR ServiceMetric

0..N

0..N

«enumeration»
GateCondition
GREATHER_THAN
LESS_THAN
...

Workload Deviation Quality Gates
max_mix_deviation: Percent
max_think_time_deviation: Percent

WorkloadMetric Quality Gates
gate_metric: WorkloadMetric
condition: GateCondition
gate_threshold: String OR WorkloadMetric

0..N

0..1

Service Quality Gates

0..N

Figure 6: DSL: The Quality Gates Meta-Model

or with another metric or statistic. If more than one condi-
tion is specified, they are all evaluated and in order for a
test to be considered successful, all the conditions have to
be satisfied.

The conditions that can be specified on the issued work-
load, also enable the user to specify the maximum allowed
deviation from the defined mix and the maximum allowed
deviation from the specified think time for the simulated
users. The YAML format depends on the actual mix that is
selected by the user. The maximum allowed deviation is rel-
evant to account for possible errors in the interactions with
the SUT, because erroneous interactions are not counted as
part of the results, thus introducing variations in the speci-
fied mix or think time.

Currently all the quality gates are verified after the execu-
tion of an experiment, thus are applied to each experiment,
and consequently to each test if the gates are defined on a
test level metric.

Quality gates complement termination criteria. Quality
gates are evaluated after successful executions of experiments
to determine whether the test succeeded. Termination crite-
ria instead control and act on the test execution process
and determine the final state of execution of experiments as
a function of the outcome of the corresponding trials. They
are also used to limit the execution time of tests with bounds
on the maximum runtime or maximum number of failures.

Workload - The workload entity (Fig. 7) allows the user
to specify the different named sets of operations to be ex-
ecuted against the SUT during the performance tests. The
user can specify multiple named sets of operations, repre-
senting different utilization scenarios of the SUT that have
to be executed in parallel. An example for an e-commerce
SUT could be a set of operations named “clients” (currently
mainly HTTP requests to the SUT) simulating clients brows-
ing the catalogue and buying goods, and a set of operations
named “admins” of website admins adding new items to the
catalogue. The actual format used to describe them in the
DSL is omitted for space reason.

For each set of operations it is possible to specify its popu-
larity, representing the percentage of requests that should be
issued to the SUT from the given named workload. Within a
single set of operations, it is possible to indicate how to mix

Workload

Operation Set
driver_type: DriverType
popularity: Percent

«enumeration»
DriverType

HTTP

name1..N

Operation

operations

1..N

Mix
mix

1

«enumeration»
InterOperationsTimingsType
NEGATIVE_EXPONENTIAL
UNIFORM
FIXED_TIME

interOperationTimings 1
Http

Figure 7: DSL: The Workload Meta-Model

the operations and the inter_operation_timings. We rely on
Faban13 and its driver meta-model as performance test exe-
cution framework (Sect. 4), and we expose in the DSL all the
supported mixes of operations and inter_operation_timings
Faban supports. These are: fixed-sequence defining a fixed
order over the operations; flat-mix randomly deciding the
next operation based on the corresponding probabilities; and
flat-sequence-mix a combination of fixed-sequence and flat-
mix that allows the user to specify a random selection of fixed
sequences, as well as matrix-mix that implements a Markov-
chain model and select the next operation based on the cur-
rent operation and the provided probability. More details
are available on the Faban documentation, and we omit them
here for space reason. The supported inter_operation_timings
are: negative-exponential, uniform or fixed-time. The inter_-
operation_timings also require configurations, omitted be-
cause not central for this work.

Sut - By relying on the integration of the DSL runtime
with Docker technologies, the user can also control the SUT
configuration and deployment in a declarative way as mod-
eled in Fig. 8. The deployment descriptor of the SUT is cur-
rently specified using the Docker Cloud and Compose Stan-
dard, and in the DSL is possible to override some resource
settings and configurations, and decide which services of the
SUT should be deployed on which server (identified using an
alias), other than specify a name and a version for the SUT.
This way it is possible to reuse the deployment descriptor
across different tests.

The user can also decide which service is the target of the
defined test and its endpoint, and how to determine that
the targeted service is ready to accept requests (currently a
regular expression matched against the target service logs).
Setting custom configurations and deciding which services
to deploy on which server, allow the user to have control on
the way the services of the SUT has to be started, for exam-
ple to rely on stubbing mechanism that might be available in
the services, so that to isolate the service from dependent ser-
vices (e.g., to avoid cyclic dependencies) for the performance
test.

13http://faban.org, last visited April 11, 2018

http://faban.org


A Declarative Approach for Performance Tests Execution in CSD Environments ICPE ’18, April 9–13, 2018, Berlin, Germany

Sut
name: String
version: String

Target Service
name: String
endpoint: String
sut_ready_log_check: Regex

Deployment
service: String
server: String

Service
resources: Resources
configuration: List<ServiceConfiguration>

name1..N

1..N

1

Sut Configuration0..1

Figure 8: DSL: The SUT Meta-Model

Data Collection - In order to compute the metrics to be ob-
served, data collector services need to be available to collect
the raw performance data on which the computed metrics
are based on. On the client-side we rely on Faban to col-
lect workload performance metrics, thus a Faban collector
service can be specified, and optionally configured. On the
server-side we provide data collector services for server and
service resource utilization, service logs, data on the file sys-
tem produced by the services, and data stored in databases.
The list can be easily extended by integrating new data col-
lector services, according to the user’s needs. For many data
collector services we provide defaults, for others we require
the user to configure the collector so that it can access the
data (e.g., the database data collector services require con-
figuration to be able to access the database, and collect the
wanted data). To be able to collect all the data required to
respond to current and future users need, by default all col-
lector that do not require configurations are enabled on all
the services.

3.3 DSL Library and Static Validation
The DSL has been designed to be integrated in CSD, and
other than enabling the language with specific entities re-
lated to the context, we also make sure that the meta-model
behind the DSL can be utilized within those contexts. In
CSD different tools are employed to build and control the
development and deployment of systems [9], thus being able
to access the language features within those tools is funda-
mental for extensibility. For this reason, we implemented a
library exposing the DSL meta-model in a functional way to
other programs, so that other systems can parse a DSL defi-
nition serialized in YAML, or can rely on a Builder interface
to create an instance of the meta-model to be submitted to
the framework. By leveraging the meta-model presented in
Sect. 3, the library ensures the definition is syntactically and
semantically valid, before an instance of a test can be instan-
tiated. This is very important in the context of performance
testing and CSD, because performance tests usually require
a fair amount of time to be executed. So everything that
can be verified statically, must be verified statically, and
erroneous test definitions can be spotted early. The meta-
model definition supports by design syntactic validation, by
ensuring entities can be parsed only if correctly structured

and if using the data types we enforce in the model. For what
concern semantic validation, we ensure that the definition of
the test is consistent, by verifying that each single entity is
defined in a semantically correct way (e.g., data collectors re-
quiring configurations are specified if some metrics computed
on top of performance data collected by those collectors are
declared as observed by the user), and that the entire defi-
nition has not conflicting statements (e.g., we assert that if
a test defines an exploration on the load function, then the
same is not also defined as part of the configuration).

4 CONTINUOUS, END-TO-END
PERFORMANCE TEST AUTOMATION

The DSL, and its library, are paired with a model-driven
framework which drives the end-to-end lifecycle of the perfor-
mance test execution embedded into a continuous software
delivery process, presented in this section.

4.1 End-to-end Performance Test Automation
The framework is designed to completely assist the user in all
the activities that need to be executed for automating perfor-
mance tests execution, such as test scheduling, handling of
load and SUT deployment infrastructure, issuing the work-
load, deploying the SUT, collecting client- and server-side
data, undeploying the SUT and data analysis. The overall
process of end-to-end performance test execution automa-
tion as described with the DSL consists of three phases: ex-
ploration, execution and analysis.

Exploration - The exploration phase handles the way a
performance test is executed in order to reach its goal, and
it is the central phase to the lifecycle. Before the test starts,
following the test definition described in the DSL, the ex-
ploration phase handles the necessary preparations before
the performance test is executed in order to reach the goal
specified by the user. After the test definition has been stati-
cally verified for correctness, based on the goal, one or more
experiment definitions are generated together with the cor-
responding SUT deployment descriptor, and a given number
of trials are scheduled for execution.

Given its central role, after the execution of each experi-
ment trial, the exploration phase is also in charge of taking
action based on the results of the analysis phase. The explo-
ration phase receives all the metrics declared in the observe
DSL entity, so that termination criteria and quality gates
can be evaluated to decide how to continue the exploration,
or failures data about something that went wrong during the
execution (Sect. 4.3).

Execution - Deploying and running a performance test is
done in the execution phase. The first step of the execution
phase concerns the SUT deployment. To deploy the SUT we
use Docker14 containers - a lightweight virtualization plat-
form. The SUT deployment descriptor includes both config-
uration environment variables and resource constraints, and
by altering the specification we are able to automatically
define performance tests that involve system and resource
14Docker - https://www.docker.com, last visited April 11, 2018
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Figure 9: Test Lifecycle - High-Level States

configuration. Before starting each trial, a new deployment
of the SUT is performed, to ensure that the test starting
conditions are always the same for all the trials. After de-
ployment, the experiment execution starts according to the
defined workload. The framework takes also care of starting
the data collection services needed to collect performance
data relevant for the test.

Analysis - In the analysis phase performance data pro-
duced by the experiments is collected and analyzed. The
computed metrics and statistics are provided to the users
for analysis, and fed back in the exploration phase so that
decisions on how to continue the exploration can be made.

In this work we mainly focus on the automation of the ex-
ploration phase, thus more details are provided on this phase
in Sect. 4.2 and Sect. 4.3. For the automation of the execu-
tion and the analysis phases, and the overall architecture of
the framework, one could refer to our previous work [7].

4.2 Performance Test Exploration Lifecycle
The exploration phase is at the core of declarative goal-
driven performance test automation execution. To drive the
automated execution, goal exploration, and failures handling
of performance tests, we defined a lifecycle implemented
through a state machine. The complete lifecycle is realized
by a test lifecycle, driving the exploration of the goal, and
an experiment lifecycle, driving the execution of the different
trials of a single experiment that is scheduled.

Fig. 9 depicts the high-level states of the test lifecycle.
The high-level states are inspired by the scheduling of pro-
cesses in an operating system: start (new), ready, running,
waiting and terminated. The start state is reached after the
test has been verified as syntactically and semantically cor-
rect, and setup the framework to be ready for test execution
(i.e., stores relevant data to be accessible in next states). If
no errors happen in the start state, the test is moved to the
ready state and is available to be scheduled for execution
by the framework. If errors are encountered, the stored data
are deleted, and the user is alerted that the test can not
be scheduled for execution. When there are resource avail-
able for execution, the test is moved from the ready state
to the running state, where the actual execution of the test
exploration and experiment execution happen. The user, or
the system, could decide to pause the test. In this case the
test is moved to the waiting state, waiting for user input be-
fore proceeding. Once the execution of the test is completed,
it is moved to the terminated state, that represent a final
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Figure 10: Test Lifecycle - Running and Terminated States

test state after which the state of the test can change only
if re-started by the user. The running state is the most rich
and complex one, thus we define different substates, that are
presented in Fig. 10. The same figure also reports the possi-
ble final terminated substates a test can end in. The running
state is divided into several substates: determine exploration
strategy, determine and execute experiments, handle exper-
iment result, validate termination criteria, check quality
gates, and terminating. The different states of the state ma-
chine, are mapped to the DSL entities, and represent the ex-
ecution semantics driven by the declarative specification de-
scribed in Sect. 3. The determine exploration strategy state
is used to set a predefined exploration strategy for experi-
ment selection in case the user did not specify one in the
test. In the determine and execute experiments the experi-
ment to be executed next is determined by the selection
strategy. After the selection, the control is handed over to
the experiment lifecycle, that we do not show for space rea-
son. The experiment lifecycle handles the execution of trials,
and re-execution of the same in case of failures, as described
in Sect. 4.3. As per the test lifecycle, also for the experiment
lifecycle, termination criteria defined in the test definition
are verified, after each trial complete the execution. The pos-
sible final sub states for the experiment terminated state are:
completed, when the execution complete as expected, error
if an error incurs in generating the experiment bundle or in
setting up the experiment on Faban for execution, failure
when some termination criteria can not be reached before
the end of the execution (e.g., the expected confidence inter-
val at the wanted precision can not be reached within the
defined maximum number of trials) or some unexpected fail-
ures happen during the execution (Sect. 4.3), or aborted if the
execution is aborted due to reaching time based termination
criteria in the test lifecycle. Once the experiment has exe-
cuted, the SUT undeployed, performance data collected and
the result, e.g., execution status and metrics, of the execu-
tion is available, the handle experiment result state ensures
that the result is retrieved and saved for easy access in other
parts of the lifecycle, e.g., for use in the check quality gates
state. If the data is not received within a given maximum
time, e.g., due to errors in data analysis, then the lifecycle is
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moved to the next state that evaluates the absence of data
and ends the test as partially completed. After the result is
collected, the termination criteria are verified in the validate
termination criteria state. If the termination criteria veri-
fication stops the experiment before the wanted number of
experiment is executed, then according to the actual termi-
nation criteria the final terminated inner state is partially
complete or completed with failure. The partially complete
state can also be reached if the user decides to abort the exe-
cution or if a time based termination criteria is triggered. If
the termination criteria do not stop the execution, then the
quality gates are evaluated. If the quality gates pass, then
the next experiment, if present, is executed, or the test is
moved into the goal reached state. If the quality gates fail,
the test is moved in the completed with failure state and the
reason of the failure is embedded as part of the state so that
it can be reported to the user.
4.3 Failures Handling
The end-to-end performance test execution can incur in sev-
eral failures that are unexpected, even though we make sure
to statically verify that the test definition in the DSL is
syntactically and semantically correct. As performance tests
often require a significant amount of execution time, auto-
matic failure handling is crucial in CSD, and failures should
therefore be handled as soon as possible. We defined a tax-
onomy of possible runtime errors that we could encounter
during the execution.

The taxonomy covers all the cases we were able to identify,
even though it can not yet be considered exhaustive. The
taxonomy differentiates between failures that can incur on
the three different levels: test level, experiment level and
trial level. On the test level a failure happens when the data
provided by the results of an experiment are not sufficient
to reach the goal (e.g., because the experiments can not be
successfully executed), and therefore the test is terminated
prematurely. In the cases where a failure on the experiment
level does not impact the overall goal, the framework on the
other hand continue with the exploration. Experiment level
failures are caused by trial failures and stops the execution of
additional trials for the given experiment since these are also
expected to fail. The trial failures are directly related to the
execution of a performance test. It can either be a failure
that directly causes an experiment failure since additional
executions would likely cause the same behavior (e.g., wrong
specified endpoint, or fatal errors in deploying and verifying
the SUT as ready), or the trial can be re-executed (if the re-
execution does not succeed after a given number or retries,
then an experiment failure is triggered) if the failure was
more of a random nature. Currently, the presence of failures
in verified after each trial completes its execution.

4.4 Open-source Framework as a Service
The framework, as the DSL, has been designed to be inte-
grated in CSD environments. It is open-source15, extensible
15The BenchFlow framework GitHub repository - https://github.com/
benchflow, last visited April 11, 2018

by design and deployed as a service exposing REST APIs.
The framework is meant to be used by users for exploratory
testing and for automated execution of tests in CSD. Users
might want to execute tests at any moment in time, and
for this we provide a command line client interacting with
the APIs. When tests are automated in CSD, another entry
point for test scheduling are other tools in the CSD lifecycle,
such as continuous integration systems. These systems can
interact with the framework using the same REST APIs as
the command line client, and issue pre-defined performance
test definitions serialized in YAML, or performance tests
built on the fly using the DSL library given the current needs
of the CSD process.

The framework is developed to take performance test exe-
cution requests, and automate the process of execution up to
the point in which users input is required (i.e., when results
are ready or failures happen in the process). When execut-
ing performance tests, especially in CSD, traceability and
reproducibility of what happens is very important, also to
improve the process. For this reason the framework logs all
the steps and decisions taken during the test execution, such
that the process is transparent and inspectable by the users.

5 USE CASES
In this section we present different real-world use cases from
our experience in applying the framework in different re-
search contexts. The use cases are meant to show: 1) how
the declarative approach implemented in the DSL, and its
expressiveness, enables different performance testing activi-
ties (use cases: Load Test, Exhaustive Exploration Test, Sta-
bility Boundary Test); 2) how the automation framework
is configured using the DSL’s meta-model, and control the
end-to-end lifecycle of test executions (use cases: Termina-
tion Criteria, Quality Gates).

We omit final results showing the outcome of the use case
execution fro space reason, as the focus of the paper is on
the declarative performance test definition using the DSL,
and the test execution by the framework.

Load Test - This use case shows how the user can specify
a load test using the provided DSL, that for example could
be set to be executed continuously as part of nightly builds
of the SUT. The SUT we refer to in this use case is real-
ized by two services, one named catalogue_ws and a second
one named dbms. The services are connected and represent
a REST Web service handling an items catalogue and the
DBMS it relies on. The user’s intent is to issue a load test,
with the defined load function, and observe some defined
metrics, under a given SUT configuration provided using the
model presented in Fig. 8, and a given workload where the
simulated users interacting with the SUT browse the cata-
logue, that we omit for space reason. The user is interested in
observing the response time metrics for the browse workload,
as well as metrics related to the RAM and CPU utilization
for both of the services. Listing 2 presents the YAML format
for the test specification, with omitted details that are not
central to the use case. When the framework executes a load

https://github.com/benchflow
https://github.com/benchflow
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configuration:
goal:

type: load_test
observe:
workload:

browse: [response_time]
services:

catalogue_ws: [ram, cpu]
dbms: [ram, cpu]

load_function:
users: 1000
ramp-up: 2m
steady-state: 10m
ramp-down: 2m

Listing 2: Load Test: Metrics and Load Function

test, only one experiment is executed by the lifecycle pre-
sented in Fig. 10, thus after the experiment terminates the
execution, the test is concluded. In the case of this example,
since no termination criteria nor quality gates are defined,
the test ends up in the goal reached state, unless failures hap-
pen during the execution (for which 3 trials are scheduled
by default) or in retrieving the test result, in which cases
the final state would be completed with failure. The frame-
work implements some default failure handling mechanism,
as presented in Sect. 4.3, so that to avoid wasting resources
to execute tests that can not reach the final goal. If the test
can not reach the final goal its execution is stopped, indepen-
dently of eventually defined termination criteria or quality
gates. After a successful execution, the user is provided with
access to the metrics declared in the observe section of the
test definition and relevant statistical tests to help the user
investigate the quality of the obtained results. The user can
also optionally access artifacts generated during the automa-
tion process, and all the collected raw data, for transparency
and reproducibility.

Exhaustive Exploration Test - In this use case we show
how a user can define an exploratory test, that performs an
exhaustive exploration of the described performance space.

The user’s intent could be to learn about the performance
of the developed system when setting different configurations
and resource allocations. Listing 3 presents the YAML spec-
ification responding to this goal, where we omit the specifi-
cation of the load function and the observed metrics, that
are the same as in Listing 2. By relying on the declarative
approach provided in the DSL, the user specifies that she
wants to explore the performance in all the 48 configura-
tions in the exploration space defined by the Cartesian prod-
uct of all the values of the specified exploration variables:
NUM_SERVICE_THREAD as configuration setting of the
catalogue_ws service, memory, and CPU as resource set-
tings for the dbms service. As shown in Listing 3 the user
can rely on a step based definition, as she is doing for explor-
ing the memory, to define the way to determine the values

configuration:
goal:

type: exhaustive_exploration
exploration:

exploration_space:
services:

catalogue_ws:
configuration:

NUM_SERVICE_THREAD: [12, 24]
dbms:

resources:
memory:

range: [2GB, 24GB]
step: +2GB

cpu: [4, 8]
exploration_strategy:
selection: one-at-a-time

Listing 3: Exhaustive Exploration Test: Exploration Space

to explore in the exploration space, that in the case of the
example includes all the values between 2GB and 24GB with
a step of 2GB.

When the goal declared in Listing 3 is executed by the
lifecycle presented in Fig. 10, all the experiments in the ex-
ploration space are scheduled one after the other, following
the one-at-a-time selection strategy that executes the exper-
iments in the order they are defined in the exploration space.
In this use case we can see how simple would be to change
the way experiments are selected, to explore the space in dif-
ferent ways and getting first results that belongs to other re-
gions of the space. If a user would like to do so, it is a matter
of changing the value of the exploration_strategy.selection
setting to the other strategies that are made available by
the framework, or custom strategies added by the user. As
in the load test use case, since no termination criteria nor
quality gates are specified, if there are no failures the test ter-
minates in the goal reached state after all the experiments
have been executed, otherwise it terminates in the termi-
nated with failure state.

Termination Criteria - Given the expressiveness of the
proposed declarative DSL, the user can define tests execut-
ing many experiments and potentially lasting a long amount
of time to be completed, and that can incur into errors. In
this use case we show how a user can have control on the
execution lifecycle of the test defined in Listing 3, to set con-
ditions leading to a premature termination of the test execu-
tion. This way the users can rely on the automation provided
by the framework to continuously execute tests, and she has
control on the time allocated to their execution and in decid-
ing when avoiding wasting resources because the test can not
be considered valid. In Listing 4 the user decides to define a
maximum runtime for the test of 20 hours, with a maximum
number of failed experiments set to 5% of the total number
of experiments to schedule (48). Each experiment is set to be
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configuration:
termination_criteria:

test:
max_time: 20h
max_failed_experiments: 5%

experiment:
workload:

browse:
confidence_interval_metric:

avg_response_time↪
confidence_interval_value: 50ms
confidence_interval_precision: 95%
max_number_of_trials: 10

Listing 4: Exhaustive Exploration Test: Termination Criteria

executed multiple times, with a dynamic termination criteria
set on the browse workload. The termination criteria states
that the confidence interval of the avg_response_time has
to be 50ms at 95% of confidence level, with an upper limit
of 10 trials.

When the framework executes the declared goal, each ex-
periment is repeated a variable number of times, and if the
wanted confidence interval is achieved within the max_num-
ber_of_trials its execution is marked as successful. On the
contrary, if fatal errors happens, or the confidence interval
can not be obtained within 10 trials, the experiment execu-
tion is marked as failed. The test is executed for a maxi-
mum time of 20 hours, and if it is not completed within the
maximum time, it is suspended and moved to the partially
complete terminated state from where the user could decide
to ask the framework to continue its execution by extending
the amount of time it can run. If during the execution more
than 5% of the experiments fail because of one of the fail-
ures presented in Sect. 4.3 or because termination criteria
are failing the test, then the test is moved to the completed
with failure state.

As for the other user cases, the user can access all the met-
rics and produced data, that in this case would also contain
data related to eventual failures that happened.

Quality Gates - The use case presented in Listing 5 is also
based on the one presented in Listing 3, and in this case the
user’s intent during the exploration of the performance of
the system in the specified space, is verifying if the system
does not exceed a specified 95𝑡ℎ percentile for the registered
response time for the entire browse workload, that the maxi-
mum deviation from the specified mix is less or equal to 2%,
and that the average CPU utilization of the catalogue_ws
is less or equal than 70%. By setting quality gates, the user
has control on the final result of the test, and can decide
to stop the execution as soon as these quality gates are not
achieved, marking the test as failed, or continue its execu-
tion reaching a successful state. This is important because

configuration:
quality_gates:

workload:
browse:

95thp_response_time: <= 250ms
max_mix_deviation: 2%

services:
catalogue_ws:

avg_cpu: <= 70%

Listing 5: Exhaustive Exploration Test: Quality Gates

configuration:
goal:

type: stability_boundary
exploration:

stability_criteria:
workload:

browse:
max_mix_deviation: 5%

services:
catalogue_ws:

avg_cpu: <= 80%
dbms:

avg_cpu: <= 90%
exploration_strategy:
selection: stability_boundary_first

Listing 6: Stability Boundary Test

often, in CSD environments, continuous validation of per-
formance benchmarks are executed, to continuously verify
that the system keeps achieving specified quality conditions
in given configurations.

Stability Boundary Test - In this last use case, we show
how the user can specify a more advanced goal, namely
a stability boundary goal. We base this use case on the
Listing 3, and in Listing 6 we present the changes to be
applied to the specification in order to define a stability
boundary goal. In the case of stability boundary goal, the
stability_boundary_first selection strategy has to be speci-
fied, and a new section has to be added in the specification,
namely stability_criteria, to define the stability criteria for
the SUT. The stability_boundary_first selection strategy is
enabled to use the defined stability criteria and decide the or-
der of experiments to be executed in the defined exploration
space. In the case of Listing 6 the user is setting stability cri-
teria on the workload and services average CPU utilization.

The framework, by applying the stability_boundary_first
strategy, determines the order of the experiments such that
the first to be executed are the ones were the system is ex-
pected to be less stable, and then applies a binary search
in the exploration space to trace the stability boundary, if
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the system is not stable in the first set of mentioned ex-
plored points. The current assumption is that the system is
expected to be less stable were allocated resources to the
service are less, and configuration values are expected to be
worst (here the assumption towards the user for the stability
boundary goal, is that the values of a configuration variable
are provided in the order from expected worst to expected
best performance as it is in the case of Listing 3). The idea
is that in this way the user can start to collect data about
regions of the exploration space were the system is more
likely to be not stable, and although the space could be ex-
plored completely in case the system is stable in the entire
exploration space, she could set termination criteria based
on time or on maximum number of failed experiments to
decide when to stop the exploration.

6 CONCLUSION AND FUTURE WORK
In this work we presented a declarative DSL for specifying
goal-oriented performance tests, mainly focused on container-
packaged (Micro)service systems, and a model-driven frame-
work that enables the automated end-to-end execution of
the specified tests. As shown with different use cases, the
DSL allows developers to explicitly declare the goal of the
performance test, as well as precisely control the deployment
configuration of the SUT. The framework automates the end-
to-end execution of performance tests defined using the DSL,
whose execution semantics is defined in terms of state ma-
chines controlling the tests execution and allowing to stati-
cally checking tests for correctness. The declarative nature of
the DSL makes explicit the intent, purpose and applicability
context of the defined tests, as well as opening up the pos-
sibility to use alternative exploration strategies to achieve a
given goal. Both the DSL and the framework have features
relevant for CSD environments, such as termination crite-
ria, quality gates, observable metrics and user-defined failure
handling mechanisms. As future work we plan to extend the
set of goals supported by the DSL, add additional strategies
to navigate the exploration space, and integrate statistical
model based techniques, to speed up the exploration space
exploration [21]. We also plan to collect structured users’
feedback on the declarative DSL after applying it to more
real-world usage scenarios.
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