
Contents lists available at ScienceDirect
Journal of Visual Languages and Computing

Journal of Visual Languages and Computing 25 (2014) 414–432
1045-92
http://d

☆ This
n Corr
E-m

c.pautas
journal homepage: www.elsevier.com/locate/jvlc
End-User Development of Mashups with NaturalMash$

Saeed Aghaee n, Cesare Pautasso
Faculty of Informatics, University of Lugano (USI), Switzerland
a r t i c l e i n f o

Article history:
Received 17 July 2013
Received in revised form
13 November 2013
Accepted 31 December 2013
Available online 20 January 2014

Keywords:
Mashups
End-User Development
Mashup tools
WYSIWYG
Natural language programming
Programming by Demonstration
6X/$ - see front matter & 2014 Elsevier Ltd.
x.doi.org/10.1016/j.jvlc.2013.12.004

paper has been recommended for acceptan
esponding author.
ail addresses: saeed.aghaee@usi.ch (S. Aghae
so@ieee.org (C. Pautasso).
a b s t r a c t

Context: The emergence of the long-tail in the market of software applications is shifting
the role of end-users from mere consumers to becoming developers of applications
addressing their unique, personal, and transient needs. On the Web, a popular form of
such applications is called mashup, built out of the lightweight composition of Web APIs
(reusable software components delivered as a service through the Web). To enable end-
users to build mashups, there is a key problem that must be overcome: End-users lack
programming knowledge as well as the interest to learn how to master the complex set of
Web technologies required to develop mashups. End-User Development (EUD) is an
emerging research field dealing with this type of problems. Its main goal is to design tools
and techniques facilitating the development of software applications by non-programmers.

Objective: The paper describes the design and evaluation of NaturalMash, an innovative
EUD tool for mashups (a mashup tool). NaturalMash aims at enabling non-professional users
without any knowledge of programming languages and skills to create feature-rich,
interactive, and useful mashups.

Methods: The design of NaturalMash adopts a formative evaluation approach, and has
completed three design and evaluation iterations. The formative evaluations utilize usability
testing, think aloud protocol, questionnaires, observation, and unstructured interviews.
Additionally, we compare the expressive power of naturalmash with the state-of-the-art
mashup tools.

Results: The results from the formative evaluations helped us identify important
usability problems. From an assessment point of view, the results were promising and
sggested that the proposed tool has a short and gentle learning curve in a way that even
non-programmers are able to rapidly build useful mashups. Also, the comparative
evaluation results showed that NaturalMash offers a competitive level of expressive power
compared with existing mashup tools targeting non-programmers.

Conclusion: As the evaluation results indicate, NaturalMash provides a high level of
expressive power while it is still highly usable by non-programmers. These suggest that we
have successfully achieved the objective of the proposed tool, distinguishing it from existing
mashup tools that are either too limited or highly specialized for non-professional users.

& 2014 Elsevier Ltd. All rights reserved.
All rights reserved.

ce by Shi Kho Chang.

e),
1. Introduction

With the proliferation of Web APIs (i.e., reusable soft-
ware components published on the Web), the Web [1] has
become a highly programmable platform. A lightweight
form of Web applications that is widely developed and
used on this platform is called mashup. Mashups are

www.sciencedirect.com/science/journal/1045926X
www.elsevier.com/locate/jvlc
http://dx.doi.org/10.1016/j.jvlc.2013.12.004
http://dx.doi.org/10.1016/j.jvlc.2013.12.004
http://dx.doi.org/10.1016/j.jvlc.2013.12.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2013.12.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2013.12.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jvlc.2013.12.004&domain=pdf
mailto:saeed.aghaee@usi.ch
mailto:c.pautasso@ieee.org
http://dx.doi.org/10.1016/j.jvlc.2013.12.004

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432 415
usually built by users themselves by composing different
Web APIs in an ad hoc fashion [2]. As a result, they provide
users with the opportunity of rapidly satisfying their situa-
tional needs in various domains of application [3,4], ranging
from daily utilities of Web users to specialized domains,
such as e-learning [5], bioinformatics [6], health care [7],
emergency management [8] and enterprise integration [3].

In spite of the growing demand for mashups, their
development barriers (e.g., knowing how to code in Web
scripting languages like PHP and JavaScript, understanding
Web API protocols such as HTTP) can hinder their prolifera-
tion. This is due to the fact that the dominant type of mashup
users in various application domains are those with little or
no knowledge in programming and related technologies. In
order to cope with this challenge, therefore, these non-
professional users need to be empowered to create mashups.
End-User Development (EUD) [9,10] is a research area that is
committed to address this type of problems. Research and
development in EUD for mashups have resulted in the
emergence of dedicated mashup tools [11] that provide end-
users with an intuitive composition language and environ-
ment for on-the-fly and code-free development of mashups.

In this paper, we present in detail the design and the
evaluation of an innovative mashup tool called Natural-
Mash. NaturalMash provides adequate expressive power to
create non-trivial, feature-rich, and interactive mashups
out of the composition of Web APIs provided through
different technologies (ranging from REST and SOAP ser-
vices to JavaScript and HTML5 widgets). NaturalMash is
designed to be usable by non-professional users by ensur-
ing that it is easy to understand and easy to learn with a
gently sloped learning curve (thanks to a highly interac-
tive, live programming environment, featuring immediate
feedback and autocompletion). Many mashup tools with
the same level of expressive power (e.g., IBM Mashup
Center (http://www.ibm.com/software/info/mashup-center),
and JackBe Presto (http://www.jackbe.com/) are, how-
ever, designed in a way that is too specialized for non-
professional users. On the other hand, mashup tools
explicitly targeting non-professional users, such as
IFTTT (https://ifttt.com) and ServFace Builder [12], do
not provide adequate expressive power to freely com-
pose any type of Web APIs.

This paper also contributes a novel, hybrid end-user
programming technique [13] based on natural language
programming [14], live programming, WYSIWYG [15]
(What You See Is What You Get), and Programming by
Demonstration [16] (PbD). NaturalMash is one of the first
live mashup tools [17] that combines natural language
processing techniques [18] with model-driven Web engi-
neering [19] in order to provide immediate feedback to the
users and show them the resulting mashup as they are
typing up its recipe. NaturalMash was first introduced in
[20]. This paper includes additional material describing
our user-centric design approach with the complete his-
tory of its formative evaluations, an extensive comparison
with related approaches, as well as additional usage
examples to demonstrate its expressive power and infor-
mation on the internal architecture of NaturalMash.

A formative user-centered design approach enabled us
to collect early feedback on the system by two groups of
users differing in their computer science knowledge:
programmers and non-programmers. This approach
helped us better focus the design and avoid gaps between
the user expectations and the delivered system. As of yet
we have completed three iterations of design and evalua-
tion. Initial findings from the evaluations indicate that
users with little or no programming experience can
become productive and successfully build useful mashups,
confirming the validity of some of the design decisions
behind NaturalMash.

The rest of the paper is organized as follows. Section 2
presents the goals, requirements, and rationale behind the
design of NaturalMash. We explain our approach to use
natural language programming for mashup development
in Section 3. Sections 4 and 5 thoroughly describe, respec-
tively, the graphical user interface environment and the
architecture of NaturalMash. Section 6 reports on the
formative evaluation (second iteration) of the system and
discusses the impact of users0 feedback in terms of
usability assessment and suggested areas to improve. In
Section 7 we compare NaturalMash against the state-of-
the-art mashup tools in terms of their expressive power
and the chosen end-user programming techniques. We
provide a comprehensive discussion – summarizing the
lessons learned in form of design guidelines – of the
evaluation and comparison results in Section 8. We draw
the conclusions in Section 9.
2. Design goals, requirements, and decisions

One of the main challenges in designing mashup tools
consists of balancing the trade-off between the tool
expressive power and the assumed user skills [21]. In
addressing this challenge, the design of NaturalMash seeks
to empower non-professional users (i.e., those who do not
know programming) to rapidly create useful and feature-
rich mashups with minimal prior learning. To achieve this,
we tailored our design to meet three requirements:
(i)
 a high degree of usability by non-professional users
(R1),
(ii)
 a competitive level of expressive power (R2), and

(iii)
 usefulness in a sense of being able to create useful

mashups (R3).
In order to fulfill the above requirements, we made the
following design decisions.
�
 Familiar metaphor (D1): Many users, specially non-
professional users, might not be familiar with the
technical terminology related to mashups such as
service composition and Web APIs [22]. In order to
bridge this gap, we designed NaturalMash based on the
familiar metaphor of cooking, according to which Web
APIs are referred to as “ingredients”, and the mashup
source code (composition) is the “recipe” to mix these
ingredients.
�
 Simple graphical user interface (D2): A simple yet power-
ful graphical user interface can potentially reduce the
learning barriers and make the tool more intuitive. To

http://www.ibm.com/software/info/mashup-center
http://www.jackbe.com/
https://ifttt.com

Ingredients Toolbar

displays a searchable list of
available Web APIs.

Text Field

allows to edit the mashup description.

Ingredient Dock

shows the list of ingredients used
in the mashup.

Widgets

are interactive, resizable, and can be
moved around.

Ingredients (Web API)

are draggable and represented
by an icon.

Visual Field

renders the mashup output while it is
being edited.

Fig. 1. NaturalMash environment: users type the recipe of the mashup in the text field and immediately see the output in the visual field. The output
contains interactive widgets that can be resized and relocated. The ingredients toolbar helps with API discovery, while the dock gives a summary of the
APIs used in the current mashup. Web APIs are abstracted away from the technologies they use and are represented as icon.

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432416
this end, we designed NaturalMash (Fig. 1) to have a
Single Page Application (SAP) interface composed of
merely four main components that together control all
the functions of the system: (i) text field providing
advanced support for typing in the recipe of a mashup
integration logic, (ii) visual field implementing the
WYSIWYG (What You See Is What You Get) interface
for both the design and preview of the user interface of
the mashup being created, (iii) ingredient dock graphi-
cally representing the APIs used by the mashup, and
(iv) ingredients toolbar containing all the mashups
created by the users and a searchable list of Web APIs.
�
 Live programming based on WYSIWYG (D3): NaturalMash
incorporates the live programming paradigm [23,24],
in which the edit/compile/run development life-cycle is
fully automated by the system. As a result, users can
more easily bridge the gulf of evaluation (the degree of
difficulty of assessing and understanding the state of
the system [25]). This in turn leads towards an
improved learning experience [26].
�
 Natural language programming (D4): Natural language
programming as an end-user programming technique
can potentially provide a good level of expressive
power. Also, natural languages (e.g., English) are readily
understandable by their speakers. In the design of
NaturalMash, natural language programming is enabled
through a controlled natural language (CNL) — a subset
of a natural language (e.g., English) restricted in terms
of vocabulary and grammar. The reason for using a CNL
is to ensure the accuracy of the system compiler. From
the expressive power point of view, the NaturalMash
CNL empowers users to describe relatively complex
process orchestration and data integration logic as well
as the composition of widgets (all at a very abstract
level).
�
 WYSIWYG (D5): The type of live programming [17]
utilized in the system employs a WYSIWYG interface
(the visual field) providing not only the recent version
of the mashup being edited but also direct manipula-
tion capabilities (e.g., moving and resizing the widgets)
to design the mashup user interface. Moreover, the
visual field also facilitates natural language program-
ming through visual demonstration and interactions
with widgets (e.g., clicking a map widget adds the
corresponding natural language description to
the text field, being, for instance, “when the map is
clicked”). In other words, the visual field uses PbD to
provide a direct way to partially manipulate the appli-
cation logic of the mashup being created. The combina-
tion of WYSIWYG and natural language programming
makes the user interface much more intuitive as it can
support both direct manipulation (visual field) and
descriptive representation (text field) of the mashup
being created.

3. NaturalMash controlled natural language

The NaturalMash CNL is an abstract, executable lan-
guage for modeling the presentation integration, process
integration, and data integration layers of mashups. Before

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432 417
describing its syntax and semantics we introduce the
language with a few examples.

Listing 1 is the recipe (executable text written in the
CNL) of a mashup that searches Slideshare (it is a Website
for sharing and finding presentations and documents,
http://www.slideshare.net/developers) for a topic or event
(in this example “APIDays”), and then uses the title
of each resulting slide to accurately search for its corre-
sponding presentation video in YouTube (https://develo
pers.google.com/youtube/).
Listing 2 is an example recipe of a map-based mashup.
The mashup includes a user interface composed of a Google
Maps widget (https://developers.google.com/maps/) and an
HTML table widget. The content of the table displays a
stream that aggregates content from the BBC News (http://
www.bbc.co.uk/news/10628494) and CNN News feeds
(http://rss.cnn.com/rss/edition.rss). When a news item in
the table is selected, the Yahoo! Placemaker service (http://
developer.yahoo.com/geo/placemaker/) extracts geographi-
cal data (e.g., longitude and latitude) from the text. The
geographical data is used to place a marker representing the
news item on the map.
Listing 3 builds a mashup combining Twitter (https://dev.
twitter.com/), the YouTube player, a HTML table, and a regular
Fig. 2. The grammar of NaturalMash CNL represented in Extended
Backus–Naur Form (EBNF).
expression component, extracting values from an input using
a set of predefined patterns (e.g., “YouTube video link”,
“Flickr image link”, etc.). It displays tweets about a
certain keyword in a table, and allows users to play them if
they contain a link to a YouTube video.

The above recipe examples all conform to the CNL
grammar and vocabulary and can be automatically exe-
cuted by NaturalMash. The CNL imposes specific gramma-
tical constraints that, for instance, only certain types of
sentences can be constructed. The rest of this section
describes in detail the CNL grammar as well as the way
Web APIs are specified in NaturalMash.

3.1. Abstract mashup components

The underlying implementation of the CNL accommo-
dates an abstract component model that
(i)
 gives a unified technology-neutral description of Web
APIs, and
(ii)
 models them in an abstract textual form.
The NaturalMash component model classifies and
describes various aspects of Web APIs. Different Web APIs
are broadly categorized as three types: Data Source, that
delivers a snapshot or a stream of data from remote
sources on the Web (e.g., BBC News), Service, that provides
remotely accessible business logic (e.g., Yahoo! Place-
maker), and Widget, that is a stand-alone Web application
with a self-contained (reusable) user interface (e.g., Google
Maps widget).

The component model also distinguishes two types
of functionality provided by Web APIs, namely, Task – a
passive atomic operation, and Event – an active source of
control. More in detail, an Event describes a condition that
(if satisfied) may produce a message. In the Listing 1
example, selecting an item (slide) is an Event of the table
widget. A Task, on the other hand, takes some input data,
does some processing, and then produces data. Finding

http://www.slideshare.net/developers
https://developers.google.com/youtube/
https://developers.google.com/youtube/
https://developers.google.com/maps/
http://www.bbc.co.uk/news/10628494
http://www.bbc.co.uk/news/10628494
http://rss.cnn.com/rss/edition.rss
http://developer.yahoo.com/geo/placemaker/
http://developer.yahoo.com/geo/placemaker/
https://dev.twitter.com/
https://dev.twitter.com/

Fig. 3. Typing “tweet” results in the autocomplete list showing the labels
associated with the Twitter API.

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432418
slides, given a keyword, exemplifies a Task behavior of the
Slideshare API.

The data consumed and produced by Tasks and Events
of Web APIs is modeled as, respectively, one or more input
and output parameters. Each parameter has a meaningful
and unique (only within the API scope) name; its syntactic
and semantic types are defined but not shown to the end-
users.

To give a natural language representation of APIs, each of
its Tasks and Events is annotated with a specific natural
language description called a label. For instance, “find

slides about [keyword]” is a label describing the slide-
searching Task of the Slideshare API. The input parameter
name keyword is enclosed within square brackets, creating a
placeholder for the object of the verb used in the label. In a
mashup recipe, the actual object of the sentence may be a
parameter name referring to the output of previous tasks, a
constant value, or an anaphora — in linguistic, an anaphora (e.
g., “that”) is defined as an expression linking two elements in
a document — pointing to a specific part of the recipe text (e.
g., in Listing 3 the clause “play it” contains the anaphora
“it” pointing to the output parameter of the event produced
by the table Widget). As an example of an Event label, “an
item is selected” is associated with the selection event of
the table widget. Note that an Event does not receive input
parameters, and thus its label does not need to contain any
placeholder.
3.2. CNL grammar

Fig. 2 illustrates the grammar of the NaturalMash CNL.
The top-level structure of a mashup recipe text is decom-
posable into paragraphs, which are, in turn, a collection of
sentences. To describe how to compose together Web APIs,
the CNL imposes specific grammatical constraints, which
limit the types of sentences that may be constructed. We
distinguish
�
 Imperative sentences: They are composed of multiple
imperative mood clauses. Each clause is built from a
Task label by replacing the placeholders of the label
with objects. For example, given the label “find songs

titled [keyword]” the corresponding clause can be
“find songs titled mashup”, where the object is
replaced with a constant value “mashup”.
�

Fig. 4. The source of the object (the “map click” label) as well as the
object itself “location” get highlighted as soon as the cursor is placed in
the object text.
Causal sentences: They are written in causal form in
which the time conjunction “when” introduces a pas-
sive clause (a label associated with an Event) followed
by a set of imperative mood clauses (like an imperative
sentence). The passive clause describes the cause of the
event; the imperative mood clauses represent the effect
to be realized when the cause of the event happens.
Consider the causal sentence in the example (Listing 1).
“When an item is selected, search youtube

videos about title.” In this sentence, when the
Event described as “an item is selected” happens,
the Task following it “search youtube videos about

title” is executed.
The CNL is compiled to an executable language with both
imperative and event-driven semantics. Its imperative aspect is
that the natural sequential order of the sentences in English
(i.e., from left to right) defines the control flow of a mashup
from one sentence, clause, or phrase to another.

The event-driven execution semantics of the Natural-
Mash CNL is modeled by causal sentences. Causal state-
ments are activated (but not immediately executed) when
the main control flow reaches them. An activated causal
sentence is ready to later receive control whenever its Event
happens, after which the control is immediately passed to
its imperative part. In doing so, the imperative part initiates
a parallel and independent control flow, which can be
repeatedly executed for every occurrence of the Event.
4. NaturalMash composition environment

The NaturalMash environment is designed to provide
an innovative selection of features that are meant to
enhance the user experience and the ability of users to
build sophisticated mashups. The design of the environ-
ment has been evolved over two years, as a result of a
formative user-centered process. In this section, we con-
sider the current version of the environment as this paper
is being written. We postpone the details of the evolution
and evaluation of the environment to Section 6. In the
following, we first describe each feature individually and
later show in a usage scenario how they are used in
conjunction to build a mashup.
�
 Inline search: To enhance component discovery, the
NaturalMash environment provides an inline search
feature (Fig. 3) in the text field that allows users to
(i) directly type in the text editor the (approximate)

name of the ingredient (Web API) they are looking
for, which results in the user getting a list of labels
associated with the ingredient matching or
approximating the given keyword, or

(ii) type what the ingredient is supposed to do (in case
they do not know or cannot guess the exact name
of the ingredient), by doing which the input text
will be matched against all the labels associated
with all the ingredients in the library.

�

�

User interface

Runtime cacheChange detector

Change modler Compiler cache

Compiler

JOpera engineServerClient

Response

Mashup server/client communication

Deploy

Response time

Fig. 5. The high performance architecture of NaturalMash aims at minimizing the response time to support live programming.

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432 419
In the latter case, the mechanism of searching labels
is based on
(i) exact match,
(ii) word synonym (e.g., “search” and “find”), or
(ii) word semantics (e.g., “location” and “map”).

Autocompletion: The NaturalMash CNL is based on a
restricted grammar meaning that not all possible
input combinations are acceptable. Consequently,
the CNL acts as a learning barrier as the users need
to master the grammar and syntax of the language.
The autocomplete feature (Fig. 3) is utilized to lower
the CNL learning barrier. Based on what users type
in the text field, a list automatically appears and
shows suggestions for Task/Event labels (to support
component discovery and reuse), and data flow (i.e.,
referencing suitable objects within Task labels).
�
 Semi-structured text editor: To support the users’
learning experience, the text field provides a semi-
structured text editor ensuring that user input will
not cause syntax errors, while still allowing a high
degree of freestyle editing. To be specific, the text
field:
(i) restricts input characters to avoid accidental

syntax errors (for instance the new line charac-
ters are disabled while typing an object in a
placeholder),

(ii) automatically inserts the separators “,”, “and”,
and “and,” if the cursor is positioned before
and after clauses (manual insertion of the
separators is also possible), and

(iii) streamlines selecting and moving text objects
(clauses) via, respectively, double-click and
drag-and-drop.
Data flow highlighting: In the text field, objects
indicating flow of data are displayed in boldface
(Fig. 4). Moving the cursor on the text representing
an object results in the highlighting of the text
describing its source Task or Event. This way, users
can discover the source of an object not only when
browsing the data flow suggestions in the autocom-
plete list but also after a data flow suggestion has
been entered in the text.
�
 Error highlighting: If there is an ambiguity in the
input text (e.g., the input does not match any Task or
Event label), the compiler produces an error that is
reported to the user as the text is being entered
(Fig. 3). Similar to many “spell-checking text edi-
tors”, the error is shown using a red wavy line under
the text that produced it. An autocomplete list
containing possible suggestions to disambiguate
the label is shown whenever the user moves the
cursor (or click) on the highlighted erroneous text,
and thus offering the opportunity to the user to
quickly correct the mistake.
�
 Drag-and-drop: The ingredients toolbar gives a visual
overview of the available ingredients. From there,
users can drag-and-drop an ingredient into the text
field, visual field, or ingredient dock. If the ingredient is
a widget, it will be displayed in the visual field. Also,
the autocomplete list will appear containing the
corresponding Task/Event labels.
�
 Programming by Demonstration: Interacting with
widgets in the visual field results in appending the
corresponding Event label to the text field. For
instance, clicking on Google Maps widgets results
in showing the text “when the map is clicked” in
the text field. To grab the attention of users the text
corresponding to the event is highlighted both after
it has been added and when it will be executed.
�
 Synchronized multi-perspective modeling: The three
main interaction components of the environment
(ingredient dock, text field, and visual field) are all
kept synchronized during every user interaction:
(i) editing text in the field updates the visual field

and the ingredient dock;
(ii) selecting a widget from the visual field or a

ingredient from the ingredient dock results in
highlighting its corresponding text in the text
field and vice versa (moving the caret through a
portion of the text highlights its associated
widgets and ingredient icons);

(iii) deleting an icon from the dock or a widget from
the visual field results in the removal of its
corresponding text (and vice versa).
4.1. Usage scenario

The following illustrates a common and complete usage
scenario of NaturalMash, whereby a user builds the
mashup example described in Listing 1.

Find slides about APIDays .

When an item is selected , search YouTube videos about slide title .

VB NNS IN NNS .dobj
prep_about

WRB DT NN VBZ VBN , NN NNP NNS IN NN NN .det auxpass nnnn
nsubjpass nn

advmod
prep_about

dobj

1

2

Fig. 6. The visualized output of Step 1 (linguistic information) for the Listing 1 example using the Stanford CoreNLP online tool (http://nlp.stanford.
edu:8080/corenlp/). The input is split into two sentences. Part-of-speech tags (VB: base form verb, NNS: noun plural, IN: proposition, DT: determiner, WRB:
wh-adverb, NN: noun, VBZ: present verb, VBN: past participle verb) are associated with each word in the input text. Grammatical dependencies (det:
determiner, advmod:adverbial modifier, nsubjpass: passive nominal subject, auxpass:passive auxiliary, dobj: direct object, nn: noun compound modifier,
prep_about: prepositional modifier) are shown using arrows.

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432420
The first step is to discover the right ingredients for
finding slides. This step can be facilitated by the inline
search feature which enables the users to type what the
ingredient he is looking for is supposed to do. For instance,
the user can start by typing “search slides”, which
results in the text field providing an autocomplete list of
labels that contain the input words or synonyms for
the words. Once the autocomplete list is displayed, the
user can select a proper suggestion (in this case, “find
slides about [keyword]”) by either pressing the Enter
key or pointing with the mouse and clicking.

After selecting a label from the autocomplete list,
(i)
 the label is inserted into the text field,

(ii)
 ambiguity is resolved, in case there are one or more

similar labels,

(iii)
 the mashup is rebuilt and executed,

(iv)
 another autocomplete list containing data flow sug-

gestions for the label is displayed.
For the input parameter “[keyword]”, the user may type
a constant string like “APIDays” resulting in a mashup
that uses Slideshare API to search for slides and document
matching the input constant, and automatically shows the
results in the Slideshare widget.

The output mashup is interactive and supports PbD in a
way that, for instance, clicking an item in the Slideshare
widget results in not only showing the item in the
embedded frame of the widget, but also appending the
corresponding Event label (i.e., “when an item is

selected”) to the text field as well as setting the focus
in a way that makes it easier for the user to add some Task
labels to complete the causal sentence. For example, the
user may type “video” in the text field or, alternatively,
search for the YouTube API in the ingredients toolbar and
then drag-and-drop the ingredient to the text field, both of
which result in displaying an autocomplete list containing
the YouTube API labels. Immediately after selecting the
suggestion, another autocomplete list containing data flow
suggestions is shown to the user. The user can select the
output parameter “slide title” from this list, or type an
anaphora pointing to the item such as “it”, both referencing
the click event label of the Slideshare widget. The data flow
highlighting feature helps users to figure out the source of an
object. Leaving the object placeholder empty results in the
compiler error that is shown by a red wavy line under the
placeholder. Clicking on the wavy red lines displays the
autocomplete list associated with the placeholder.

While typing the mashup recipe, the user may modify
the mashup user interface layout in the visual field. The
final mashup can then be deployed in production, with a
single click. Even after a mashup has been published, it can
still be modified and redeployed at any time.
5. Architecture

NaturalMash is designed as a live mashup tool, which
completely automates the repetitive task of compiling,
deploying, and running mashup recipes. Considering that
mashups are compositions of remote and distributed Web
APIs, it is rather technically challenging to comply with the
requirements of liveness, as the changes made by the user
to the mashup design must be reflected in the result of the
mashup execution with minimal delay.

We present the client/server architecture of Natural-
Mash (Fig. 5), which aims at achieving performance
improvements that result in decreased response time
elapsing between the instants the user manipulates a
mashup being created to the instant the resulting mashup
is compiled, executed, and displayed to the user. The
client-side runs in a Web browser and presents the user
interface of the mashup tool and of the resulting mashup
(in the visual field). The server-side handles the compila-
tion of the recipes into executable representations and
supports their runtime, which involves the interactions
with external Web services and Web data sources.

To realize which APIs are affected during the user
interactions intended for live development, consider the
following scenario. The life-cycle of each interaction
begins with the user making a single modification to the
model of the mashup being developed on the client. This
modification should target either the visual field (modify-
ing the user interface) or the textual field (editing the
recipe). Each modification may result in the server (re)
compiling, (re)deploying, (re)executing, and (re)rendering
the target mashup. It is essential that the whole interac-
tion has a fast turnaround time to enhance the overall
quality of the user0s experience and reduce the user0s
anxiety about the effect of their actions on the mashup
they are developing.

http://www.ibm.com/software/info/mashup-center
http://www.ibm.com/software/info/mashup-center

Find slides about APIDays. When an item is selected , search youtube videos about slide title .

Mashup description

Imperative sentence Causal sentence

BodyTask description

Object

Event description

Task description
Object

Imperative sentence
an item is selected

search youtube videos about [keyword]
APIDays

Fig. 7. The annotated syntax tree corresponding to the mashup label of Listing 1.

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432 421
5.1. Incremental change detector of mashup models

Mashup compilation and deployment can be time-
consuming tasks. Therefore, initially, and as soon as the
user makes a modification to the mashup, the change

detector component (client-side) identifies whether or
not the modification requires issuing a (re)compilation
request. The mechanism behind this component is based
on classifying possible modifications as follows:
�
 Front-end modifications are applied to the mashup user
interface (e.g., reorganizing widgets within the mashup
user interface layout, and adding or removing widgets),
and therefore, can be handled on the client-side with-
out a need for recompiling and redeploying the whole
mashup. These modifications are temporarily stored
and previewed, and once the user0s session is finished
or idle (to avoid losing the modifications in the case of
disconnection), the modifications are sent to the server
for persistent storage.
�
 Incomplete modifications require further modifica-
tions to take a visible effect. These may leave the
mashup recipe in a temporarily incorrect state as the
user needs to complete them before they can be
executed. For instance, a new Task is being added,
but since no data flow source has been bound to its
input it is not yet possible to display its results in a
suitable Widget. These modifications may trigger the
display of the autocompletion menu or the highlight-
ing of errors so only a partial compilation is required.
�
 Logic modifications change the back-end of the mashup,
and thus require to recompile, redeploy and re-execute
the mashup on the server-side.
Once the change detector decides a recompilation is
required, a request is sent to the server (over WebSockets).

To facilitate and speed up the compilation process, the
architecture includes the change modeler component that
supports the notion of incremental compilation [27]. More in
detail, a source model and a target model are required to
generate a change model. The source and target models are,
respectively, the high-level (abstract) and low-level (code)
models of the mashup. The change model conforms to a
metamodel that defines possible changes that may occur on
the mashup (i.e., on both the source and target models) and
contains information to link these changes from the source
model to the target model. Since in many cases mashups are
grown incrementally by adding one API at a time, it is possible
to extend the low-level code without having to regenerate it
from scratch.
5.2. Compilation and deployment

The resulting change model is passed to the compiler

component, which is responsible to
(i)
 generate executable code corresponding to the
change model,
(ii)
 merge it with the existing code, and finally

(iii)
 redeploy the mashup.
This component should allow to terminate an unfinished
compilation process to avoid continuous compilation requests
in short-intervals that put a heavy load on the server.

The compiler component in NaturalMash provides a
pipeline that transforms mashup recipes into executable
models of Web service compositions that are executed
by the JOpera engine [28]. In the following we briefly
describe the main steps of the NaturalMash compilation
process.

The process relies on a representation that initially
contains the input recipe text, but later is augmented with
a list of components used by the mashup, the specifica-
tions of the layout of the mashup user interface (e.g., the
size and position of the widgets), and an abstract syntax
tree containing data flow information (i.e., source and
destination of objects) and a mapping between the text

Activate Event 1

a slide is selected

slide title

keyword

keyword

APIDays Event 1Main Control Flow

slide_selectedsearch_slides

ACTIVATOR

slide_clicked

Fig. 8. The intermediate model generated for Listing 1. It contains two control flow graphs: Main Control Flow that corresponds to the imperative
sentence “find slides about APIDays”, and Event 1 that is associated with the causal sentence “when a slide is selected, find youtube videos

about slide title”. The passing of input data flows to output data flows is represented by ovals.

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432422
chunks (i.e., clauses and phrases) and Task and Event
labels. The mashup representation is recycled with each
round of compilation and is continuously updated as the
mashup is being developed.
�
 Step1. Natural Language Parsing: The input recipe text is
parsed and its linguistic information is extracted
(Fig. 6). This step is implemented using the Stanford
CoreNLP library (http://nlp.stanford.edu/software/cor
enlp.shtml), which enables users to tokenize the input
text and split it into sentences, parse the text and
assign a part-of-speech tag (verb, noun, etc.) to each
word, process grammatical dependencies, and create
the anaphora resolution graph.
�
 Step2. Constrained Natural Language Parsing: An abstract
syntax tree based on the NaturalMash CNL grammar is
produced. In this step, we use a formal lexer and a
parser (implemented using ANTLR, http://www.antlr.
org/) to extract and identify sentence types as well
as to extract their chunks (i.e., imperative or passive
clauses).
�

Fig. 9. The generated JOpera visual composition code [28] for Listing 1:
(a) list of processes created for the mashup: main_control_flow
implements the control flow for the imperative sentence, slide_se-
lected implements the control flow associated with the causal sentence
(slide select event), and show is the process responsible for creating the
user interface of the mashup, (b) control flow implementing Main

Control Flow in the intermediate model (Fig. 8), (c) control flow
triggered whenever a slide is selected (it corresponds to Event 1 in
the intermediate model), and (d) data flow associated with main_con-
trol_flow (“apidays” is a constant passed to the search_slides
input parameter).
Step3. API Binding: The output of Steps 1 and 2 is
consumed to build a mapping between the text chunks
extracted in Step 2 and their corresponding Event/Task
label. To attain this mapping, we first gather all the labels
associated with the Tasks and Events of the APIs regis-
tered within the NaturalMash library. These are matched
against the text chunks by ignoring the parameter
placeholders. The result is a mapping between each text
chunk and the corresponding Task or Event. In this step,
ambiguity may occur when more than one Task/Event
label match the same text chunk. Assuming that multiple
APIs sharing the same label are equivalent, the ambi-
guity can be resolved automatically based on well known
QoS-driven dynamic binding techniques [29]. Manual
intervention through the tool0s autocompletion feature
is required only if there is an aliasing problem.
�
 Step 4. Data Flow Resolution and Suggestion: The map-
ping generated from Step 3 is used to extract objects
references and complete the syntax tree (Fig. 7). To do
so, the placeholders found within the Task labels repre-
senting input data are bound to the output data

http://nlp.stanford.edu/software/corenlp.shtml
http://nlp.stanford.edu/software/corenlp.shtml
http://www.antlr.org/
http://www.antlr.org/

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432 423
referenced from the actual text. Using the results of the
linguistic analysis (Step 1) also the anaphoric objects are
resolved. The data flow operations (e.g., matching and
conversion) are delegated to the NaturalMash semantic
framework for data integration. The framework is based
on a schema for input and output parameters of APIs.
The schema contains metadata such as data type (pri-
mitive or complex), MIME type (e.g., application/xml and
application/json), and ontology-based semantic annota-
tions. Explaining the semantic data integration frame-
work in detail is out of the scope of this paper. In the case
of ambiguity (having more than one suggestion), we use
the autocomplete feature to let the user specify the
correct data flow references.
�
 Step5. Intermediate Model The disambiguated syntax
tree is consumed to generate an intermediate model
(Fig. 8) that includes control flow and data flow graphs
representing the algorithmic structure of the mashup.
This structure includes a “main” control flow graph
containing all of the imperative sentences found in the
current mashup recipe (and their constituent execu-
table chunks like clauses and phrases built from Event
and Task labels) as well as a set of “event-

triggered” control flows associated with the causal
sentences of the recipe. Causal sentences get activated
in the “main” control flow. The “main” control flow
begins when the mashup starts executing, whereas
“event” control flows are executed every time their
corresponding causal sentence occurs. The nodes of
these graphs store a mapping between the executable
and data elements of the recipe (technology-neutral)
and the target executable model of JOpera (technology-
specific).
�
 Step6. Emitter: The intermediate model is transfor-
med into the target composition code (Fig. 9), which
is directly executable by a JOpera mashup engine, which
further transforms it internally to Java bytecode for
efficient execution.The mashup execution is controlled
by NaturalMash through a REST API, which also allows
users to retrieve and display its results. By replacing the
emitter it is possible to target other mashup runtime
platforms.

The performance of the incremental compilation pro-
cess is boosted through the use of the cache storing all
the previous target models and their corresponding gen-
erated code. In doing so, the compiler component can save
considerable time and computation resources by first
looking up the target model in the cache and reusing its
corresponding generated code. Also, the cache is popu-
lated through crowdsourcing to contain the target models
generated not only by the same user but also by other
concurrent users of the tools. This way, the chances of the
compiler finding the appropriate target model are higher.

5.3. Runtime

After the mashup is compiled and deployed, a response
is immediately sent back to the client. Since the response
is asynchronous, there are three ways for the client to
receive it:
(i)
 using HTTP short polling (i.e., polling the server by
sending continuous requests in short-intervals),
(ii)
 using HTTP long polling (i.e., keeping the connection
open for a long time-interval), and
(iii)
 using Web Sockets.
Among these solutions Web Sockets is much faster and
more reliable [30], and is therefore, used by NaturalMash
as the main communication mechanism. Moreover, this
technology is nowadays mature and fully supported by the
widely used Web browsers (e.g., Google Chrome, Firefox,
Internet Explorer, etc.).

Immediately after the client is notified about the end of
the deployment, it proceeds to execute the mashup with
the given user input data. With regard to the response
time, the most important phase in mashup runtime life-
cycle is the first phase, in which the mashup is initiated in
the visual field. To optimize this phase we propose two
mechanisms based on parallelization and caching.

On the client-side, each Widget is initialized in parallel
by using WebWorkers to call the associated JavaScript
code. The server is responsible for interacting with exter-
nal Web services and fetch third-party data sources due to
the Same-Origin-Policy (SOP) sandboxing limitations
imposed by browsers. JOpera provides support for a shared
cache of Web service invocation results that can – seen as
a form of pre-fetching – reduce the execution time of
popular mashups. Caching is also a crucial feature in live
mashup tools minimizing excessive calls to the Web
services and data sources of a mashup, which most
probably have some sort of call rate limit that may hinder
the continuous re-execution of mashups invoking them.

6. Formative evaluation

As it was mentioned earlier in this paper, NaturalMash
evolved over the past two years following a formative
user-centered design approach [31], which proposes an
iterative and incremental process for design and develop-
ment of software systems. In the process, each iteration
cycle consists of design, implementation, and formative
evaluation. The evaluation is conducted at the end of each
iteration to inform the next iteration and ensure that users
were kept central in the design so as to avoid as much as
possible mismatches between users0 expectations versus
system behavior.

So far, we have completed three iteration cycles. In this
section, we present the results from the formative evalua-
tions we conducted at the end of each iteration, and show
how the evaluations have driven the design of Natural-
Mash (Table 1). In general, the results suggest the success
of our decisions in meeting the design requirements and
goals (Section 2).

6.1. First iteration

The first iteration involved the design, development,
and evaluation of the initial prototype of the system. For
the evaluation, we conducted an expert review with 10
mashup experts. We individually interviewed the experts

Table 1
The evolution of NaturalMash during the formative user-centered design process in terms of added/removed features. V0, V1, and V2 correspond to the
versions of the tool during, respectively, the first, second, and third iterations.

Features V0 V1 V2 Change rationale

Autocompletion ⨯ ⨯ ⨯ In addition to the label text, suggestions are represented with the corresponding ingredient icon
Error highlighting – ⨯ ⨯ Give immediate feedback about errors to user
Semi-structured editor – – ⨯ Prevent syntax errors
Ingredient stack ⨯ ⨯ – Replaced with Ingredient dock
Ingredient dock – – ⨯ Make the current APIs more visible to users while interacting with the visual and text fields
Side-bar – – ⨯ Let users tag favorite ingredients (APIs), and retrieve their mashups
API search box ⨯ – – Users did not realize they could search for APIs
Inline search – ⨯ ⨯ Replaced the search box to let users search for APIs from within the text field
Ingredients toolbar – – ⨯ Search and browse existing APIs
Drag and drop – – ⨯ Let users directly use a API selected from the ingredients toolbar
Programming by Demonstration – – ⨯ Allow users to (visually) demonstrate what they want
Auto-visualization – – ⨯ Visualizing output data using a suitable widget, thus reducing the complexity of the mashup

description with natural language

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432424
in order to shed light on existing usability problems, and
asked them to define how serious these were. Each expert
was asked to interact with the system (after a short
tutorial) for as long as they needed to provide feedback.
The experts were researchers and practitioners in mash-
ups that we met in mashup-related workshops such as the
5th International Workshop on Lightweight Integration on
the Web (ComposableWeb) and the 6th International Work-
shop on Web APIs and Service Mashups (Mashups). The goal
of the review was to identify common usability errors
before doing a user study.

6.2. Second iteration

The valuable feedback from the expert review informed
the re-design of the tool. Specifically, the feedback sug-
gested to (1) remove the search box, that was initially
designed as part of the component stack to help with
component discovery, and replace it with the inline search
functionality (i.e., component discovery within the text
field); (2) reorganize the user interface layout (e.g., moving
the stack from the left to the right); (3) efficiently organize
and add icons to the autocomplete menu; (4) provide
visual cues to distinguish labels of ingredients already in
use out of all returned suggestions within the autocom-
pletion menu; and (5) change short-cut keys for properly
working with the autocomplete menu; and (6) improve
the environment color scheme and fonts.

At the end of the first iteration, we conducted a user
study with the main goal of identifying early major
usability problems.

6.2.1. Users
We repeated the study with two groups of users with

similar profiles: 5 high school students, and 6 first year
students attending the USI Bachelor of Informatics. The
recruited high school students had volunteered to attend a
one-week computer science promotion program at our
University. We performed the usability testing at the very
beginning of the program in order to avoid students to be
influenced by any programming activity.

The first-year students, who just started their studies at
our University, even if inexperienced had an interest in Web
technologies and this motivated them to volunteer to parti-
cipate in the user study. In terms of programming knowl-
edge, the high school students were all non-programmers.
Likewise, among the group of bachelor0s students, there
were 2 programmers and 4 non-programmers. Participants
in both the groups had neither heard of mashups nor ever
created a Web application.
6.2.2. Method
Following Nielsen0s discount usability (http://www.

useit.com/alertbox/discount-usability.html) we consider
the size of our sample sufficient to provide meaningful
feedback at this early stage of development. In the begin-
ning of the usability testing, we gave a short tutorial about
the tool and guided them through completion of a warm-
up task that, overall, took around 10 min. We then asked
the participants to perform five tasks (developing five
different mashups) with increasing complexity (in terms
of the number of APIs to be mashed up):
Warm-up
task:
Get upcoming events in a place specified
using Google Maps (two APIs).
Task 1:
 Play YouTube videos selected from Delicious
public bookmarks (two APIs).
Task 2:
 Show Flickr images about the twitter trending
topic (two APIs).
Task 3:
 Aggregate BBC news, CNN news, and Delicious
feeds (three APIs).
Task 4:
 Display tweets and events around a selected
map location (three APIs).
Task 5:
 Create a mashup on your own (open task).
The final open task was designed to assess the ability of
the participants to independently come up with a mashup
idea, and then transform it to a concrete implementation.

Since the tasks themselves were described in English,
we attempted to minimize the similarity of the Task labels
with their corresponding solutions in the NaturalMash
CNL. After the usability testing, we asked the participants
to fill out a questionnaire to assess their satisfaction with
the tool as well as to gather their opinions on the overall
usability of the tool (e.g., their opinion on how helpful or

http://www.useit.com/alertbox/discount-usability.html
http://www.useit.com/alertbox/discount-usability.html

Fig. 10. The completion time grows with the complexity of the task at
hand. Programmers have a slightly shorter completion time than non-
programmers.

Fig. 11. The majority of tasks were accomplished successfully (correctly).
In terms of accuracy, however, there is no major difference between
programmers (P) and non-programmers (NP).

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432 425
unhelpful the environment features were in the context of
the given tasks).

6.2.3. Results
Overall, the users performed correctly 52 out of 55

tasks. On average, participants took less than 5 min to
correctly complete each task.

82% of the participants believed that the autocomplete
and inline search features helped them quickly and easily
discover appropriate Task or Event labels. As indicated by
80% of them and according to our observation, the live
preview in the visual field was really engaging and had a
positive impact on the completion of the tasks. However,
correcting mistakes in the tool was difficult for 55%
of them.

6.2.4. Lessons learned
In this iteration, the results confirm that we are on the

target to meet the design requirements. The satisfaction
results as well as the low turnaround time and high rate of
task completion and correctness suggest that we have
fulfilled the requirements R1 (usability). In the case of the
open task, the completion and correctness rate also show
that we have met the requirements R2 (useful expressive-
ness) and R3 (usefulness).

The evaluation helped to identify early critical usability
problems. The freestyle editor in the text field makes it
easy for users to make syntax errors, which in turn causes
anxiety and stress. Another usability problem, revealed in
the open task, concerns the lack of an overview of the
available ingredients. More importantly, most users
expected that the results of their commands would have
been displayed immediately. Instead, in order to display
the results of a Task on the visual field (e.g., “find tweets

around location”), users had to learn how to manually
find the right widget and explicitly add its corresponding
Task to the mashup recipe (e.g., “show the result in the

table”).

6.3. Third iteration

In the third iteration, we attempted to address the
usability problems identified in the previous iteration by
implementing a set of feature additions to NaturalMash:
�
 The semi-structured editor, making it unlikely to make
syntax errors, while allowing freestyle editing.
�
 The ingredients stack that gives a searchable overview
of existing ingredients and the corresponding drag and
drop support. We extended the component library by
adding 15 more popular ingredients to enable innova-
tion in the open task (it used to contain 7 ingredients in
the first iteration).
�
 The automatic visualization of the results in a widget
(e.g., table, map, or chart) without users having to
explicitly mention the widget.

We also moved the component dock from the right side
(where the stack currently is) to the top of the text field to
be more visible while users interact with the text field or
the visual field. After observing some users dragging the
icons of some ingredients over the widgets in the visual
field we decided to add support for PbD in the second
version.

To conclude this iteration, we conducted a formative
evaluation on a larger group of participants. The evalua-
tion aimed at not only to test the design hypotheses and
identify usability problems, but also to assess the success
of the new features in addressing the usability problems
identified in the previous iteration.

6.3.1. Users
We recruited a total of 22 participants, mostly from

young university staff and students volunteers both at the
University of Lugano and at the University of Trento. In
terms of programming skills, they were equally divided
into programmers and non-programmers.

6.3.2. Method
The participants were given four tasks of growing

complexity (in terms of the number of APIs to be mashed
up), after receiving a short tutorial (5 min) in the form of a
warm-up task (with the complexity of two APIs):
Warm-up
task:
Get upcoming events in a place specified
using Google Maps (two APIs).
Task 1:
 Search Flickr images with location from Goo-
gle Maps (two APIs).

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432426
Task 2:
 Show upcoming events in a selected location
on the map. Get information about each event
from Google (three APIs).
Task 3:
 Find slides about “Web APIs”. For each slide
found, show relevant videos, tweets, and
images (four APIs).
Task 4:
 Create a mashup on your own (open task).
During the study we recorded the user sessions (video,
audio, and screen) and asked the users to think aloud
about their activities. The recordings were complemented
by an informal interview as well as an exit questionnaire
(containing Likert scale questions) asking them about their
overall reaction and satisfaction with the tool. The aim of
the extended post-study interviews was to have a deeper,
but informal discussion with each participant with the
opportunity to reflect on what was not captured by the
questionnaires and to further discuss the rationale behind
some answers. For instance, we asked “do you have any
personal mashup/use-case of the tool?” and “why do you
feel comfortable with the tool?”.

6.3.3. Results
In terms of accuracy and efficiency (Figs. 10 and 11), the

majority of participants completed all the tasks correctly
and in a very short time (around 3 min on average), with a
slightly better performance on the programmers0 side. Out
of the total of 88 tasks, 11 programmers produced 86
correct tasks, while the 11 non-programmers achieved 84
correct tasks. Moreover, by the end of each user study
session, the majority of participants felt confident about
their mastery of the tool and reported on a high level of
satisfaction in the exit survey (72% felt satisfied with the
tool, 89% were interested in continuing using it, and 87%
wanted to suggest it to their friends).

Our recorded observations, together with the feedback
from participants through both the exit questionnaire and
the informal discussion, reported positively on the indivi-
dual features of the NaturalMash environment (Section 4).
More in detail, the following percentage of participants
reported that the features were helpful or very helpful for
the completion of the given tasks: autocomplete (92%),
inline search (91%), live execution (86%), ingredients tool-
bar (82%), and PbD (73%). The ingredients toolbar was
more frequently used for component discovery and selec-
tion than the inline search with the text field (in average,
84% of component discovery and selection tasks were
done using the ingredients toolbar). Instead, users
employed the inline search feature when they were look-
ing for a specific operation that could be perfectly
described verbally.

Overall, the participants were engaged with the tool
(77% felt that the tools were stimulating or very stimulat-
ing). In the open task, all created distinct, useful, and non-
trivial mashups. One example was a mashup that finds an
audio album in eBay and plays it in YouTube by first
searching and finding the exact name of the album using
the Last.fm API. Another example was a mashup that
shows news, Flickr images, and tweets all related to a
selected location on the map, and then allows users to
share the results on Facebook. Indeed, some of the
mashups created in the open task were actually meant to
address a real pressing need of the participants. For
instance, one of the participants created a mashup to
automate the analysis of online presence within the
tourism domain. The mashup searches tweets for a specific
tourism-related keyword, and then for each tweet found, it
searches for the Facebook profile given the name of the
author of the tweets.
6.3.4. Lessons learned
Similar to the second iteration, the results collected in

this iteration appear to support our design decisions
towards meeting the requirements. The high rate of task
completion time and correctness for the predefined tasks,
the satisfaction results, and the post-study interviews
suggest that we have fulfilled the requirement R1 (usabil-
ity). The results from the open tasks reassure that we have
successfully met the requirements R2 (useful expressive-
ness) and R3 (usefulness).

In terms of usability problems, we observed that some
users – especially non-programmers who lack algorithmic
thinking abilities – would benefit from receiving sugges-
tions not only for individual Event/Task labels but also for
hints on how to compose them together in the right order.

Another major usability problem is concerned the way
PbD is applied in the visual field, i.e., interacting with
widgets results in the corresponding Event label being
added to the text field. However, many participants con-
fused capturing the general behavior of a widget (i.e., the
event) with the recording of the concrete action on the
widget they just triggered (e.g., a specific location they
have clicked). For example, clicking on the map would add
the map-click Event label (when the map is clicked) to
the text. This is meant to be completed by appending Task
labels (e.g., “show upcoming events around loca-

tion”) that form the body of the causal sentence. Indeed,
we observed – in the same map example – the users
correctly generating the Event labels using PbD and
completing it with an imperative clause, expected to
immediately see the results from the location they had
originally selected (demonstrated) to create the causal
sentence, as opposed to having to click again on the map
to obtain the results. In other words, they did not realize
that they had created a parametric mashup that shows
events for any location on the Map. A similar problem
occurred with other widgets supporting PbD, such as
the table.
7. Related work

In recent years a number of mashup tools have been
designed in both academia and industry. In this section, we
give an overview and comparison of the state-of-the-art
mashup tools in terms of the level of expressive power they
offer as well as the end-user programming techniques they
utilize. We also review the related works in natural language
programming to put our approach in context.

Table 2
Comparison of the expressive power of state-of-the-art mashup tools.

Mashup tools Data integration Process integration Presentation

Aggregate Filter Extract Sequence Condition Loop Event Layout design Wiring

NaturalMash ⨯ ⨯ – ⨯ – – ⨯ ⨯ ⨯
Mashroom [32] ⨯ ⨯ ⨯ ⨯ – – – ⨯ –

Husky ⨯ ⨯ – ⨯ – – – – –

Karma [33] ⨯ ⨯ ⨯ ⨯ – – – – –

MashMaker [34] ⨯ ⨯ ⨯ – – – – ⨯ ⨯
Vegemite [35] – – ⨯ ⨯ – – – – –

Yahoo! Pipesa ⨯ ⨯ ⨯ ⨯ – ⨯ – – –

IBM Mashup Centerb ⨯ ⨯ – ⨯ – ⨯ – ⨯ ⨯
JOpera [28] – – – ⨯ ⨯ ⨯ ⨯ – –

JackBe Prestoc ⨯ ⨯ – ⨯ – ⨯ – ⨯ ⨯
Marmite [36] ⨯ ⨯ ⨯ ⨯ – – – – –

MashArt [37] ⨯ ⨯ – ⨯ – – – ⨯ ⨯
ResEval Mash [38] ⨯ ⨯ – – – – – – –

MyCocktaild ⨯ ⨯ – – – ⨯ ⨯ ⨯
MashableLogice ⨯ ⨯ – ⨯ – – – ⨯ ⨯
Swashup [39] ⨯ ⨯ – ⨯ ⨯ ⨯ ⨯ – –

WMSL [40] ⨯ ⨯ – ⨯ ⨯ ⨯ ⨯ – –

ServFace [12] – – – – – – – ⨯ ⨯
DashMash [41] ⨯ ⨯ – – – – – ⨯ ⨯
Omelette [42] – – – – – – – ⨯ ⨯
CRUISE [43] – – – – – – – ⨯ ⨯
RoofTop [44] – – – – – – – ⨯ ⨯
FeedRinse ⨯ ⨯ – – – – – – –

d.mix [45] ⨯ ⨯ ⨯ ⨯ ⨯ ⨯ – – –

Open Mashups [46]f – – – ⨯ – – – – –

IFTTTf – – – ⨯ ⨯ – ⨯ – –

a http://pipes.yahoo.com/
b http://www.ibm.com/software/info/mashup-center
c http://www.jackbe.com/
d http://www.ict-romulus.eu/web/mycocktail
e http://www.mashablelogic.com/
f https://ifttt.com/

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432 427
7.1. Mashup composition expressive power

The expressive power of a mashup tool plays an
important role to determine the success of the tool.
Limiting the expressive power of a tool may restrict the
diversity of the useful mashups it can create. Being able
to only create the so-called “toy” mashups has been one
of the main criticisms against existing mashup tools.
This assertion can be backed by the fact that almost
none of the mashups registered in the Programmable-
Web (http://www.programmableweb.com/) — a Website
listing thousands of mashups and popular Web APIs —

have been created by end-users using a specific
mashup tool.

However, increasing the expressive power may come
at the price of sacrificing the usability of the tool. To this
end, one solution is to design mashup tools in a domain-
specific and semi-closed manner to merely offer
“enough” expressive power suiting the needs of users
in a specific domain of application [47]. Despite the
issues concerning the closeness of domain-specific
mashup tools (e.g., the assumptions about an application
domain may change over time and thus it is frequently
required to first identify the new assumptions and then
redesign and customize the tool accordingly), a higher
expressive power even in this case serves as an added
bonus (or even a necessity) to the users. This is because
higher expressive power fosters much more innovation
and engagement, and avoids limiting the exploratory
boundaries of users that are learning how to create
diverse and rich mashups.

In this section, we show that NaturalMash offers a
competitive level of expressive power compared with the
state-of-the-art mashup tools, while it is still usable by
absolute non-professional users (Section 6).

7.1.1. Method
We collected 26 tools (including NaturalMash) based on

their availability in terms of being able to read about or use
them to extract required information about them. Also, we
made sure that there are enough mashup tools from both
the industry and the academia.

We define the maximum expressive power of a mashup
tool as the ability of composing mashups at all the layers of
presentation, process integration, and data integration [48].
More specifically, data integration is accomplished by aggre-
gating, filtering, and extracting (i.e., Web scraping [49])
different sources of data on the Web. Process integra-
tion involves application logic creation constructs such as
conditions, loops, and sequences as well as catching events
triggered by services or data sources (e.g., receiving updates
in a stream of data). At the presentation layer, various

http://www.programmableweb.com/
http://www.jackbe.com/
https://ifttt.com
http://www.slideshare.net/developers
https://developers.google.com/youtube/
https://developers.google.com/maps/
http://www.bbc.co.uk/news/10628494

Table 3
A classification of the state-of-the-art mashup tool based on end-user programming techniques. The big ⨯ and smaller ⨯ represent, respectively, the main
and secondary techniques.

Mashup tools Spreadsheets PbD Visual P. DSL WYSIWYG Form-based Example modification NLP

NaturalMash � � ⨯
Mashroom ⨯ � �
Husky ⨯
Karma ⨯ ⨯
MashMaker � ⨯ �
Vegemite � ⨯ �
Yahoo! Pipes ⨯ �
IBM Mashup Center ⨯ � �
JOpera ⨯ �
JackBe Presto ⨯ � � �
Marmite � ⨯ �
mashArt ⨯ � �
ResEval Mash ⨯
MyCocktail ⨯ � �
MashableLogic ⨯ � �
Swashup ⨯
WMSL ⨯
ServFace Builder � ⨯ �
DashMash ⨯
Omelette ⨯ �
CRUISE ⨯ �
RoofTop ⨯ �
FeedRinse ⨯
d.mix � ⨯
Open Mashups ⨯
IFTTT ⨯

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432428
widgets can be superficially rearranged (i.e., layout design) or
wired with each other (i.e., one end of a wire represents an
event fired by a widget, and the other end is attached to a
functionality offered by another widget).
7.1.2. Results and discussion
As it can be seen in Table 2, industrial mashup tools

generally offer much more expressive power than aca-
demic tools. Compared with NaturalMash, only a few
industrial mashup tools such as IBM Mashup Center and
JackBe Presto as well as scripting languages like Swashup,
WMSL, and d.mix offer as a competitive level of expressive
power as NaturalMash. These scripting languages are not
usually approachable by absolute non-programmers due
to the learning barriers. The industrial mashup tools either
are explicitly claimed to be usable only by expert users, or
are provided with limited evidence of usability by non-
professional users.

In terms of process integration, NaturalMash lacks the
support for expressing loops and conditions, for which we
have not yet noticed a clear reason to support (e.g.,
iterating over data can be automated without users having
to explicitly use loops to do so). However, supporting data
extraction in NaturalMash seems essential and can be done
through incorporating a third-party visual Web scraper
like Dapper (http://open.dapper.net/). Following the user-
centered approach, we plan to continue fine-tuning the
trade-off between the tool expressive power and the
assumed end-user skills. The benefits of the added com-
plexity would have to be evaluated with an additional
user study.
7.2. End-user programming technique

Generally, existing mashup tools can be classified
according to the end-user programming techniques they
utilize as follows (Table 3):
�
 Spreadsheets: The advantage of using spreadsheets for
creating mashups lies in their ease-of-use, intuitiveness,
and expressive power to represent and manage complex
data [50]. Mashroom [32] adapts the idea of spreadsheets
and adds the nested tables to support complex data
formats such as XML and JSON. Husky (http://www.
husky.fer.hr/) is also another spreadsheet-based tool
aiming at streamlining service composition. The main
shortcoming of such tools is the lack of support for
designing the mashup UI.
�
 Programming by Demonstration (PbD): PbD enables
users to teach a system to do a task by demonstrating
how the task is done [16]. Karma [33] allows users to
extract, filter, and aggregate content on the Web through
demonstration [49]. Intel MashMaker by [34] utilizes PbD
to extract, store, manage, and integrate data from the
Websites being browsed by the user. Vegemite [35] is
another browser-based tool like MashMaker which adds
scripting capabilities (based on CoScripter by [51]). The
use of scripting allows users to augment and operate the
extracted data. The focus of these tools is more on data
extraction and visualization, and does not provide sup-
port for service composition and orchestration.
�
 Visual programming: Programming languages can also
be expressed by visual symbols and graphical notations
[52]. Visual programming is widely used by existing

http://open.dapper.net/
http://www.husky.fer.hr/
http://www.husky.fer.hr/

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432 429
mashup tools in the form of wiring diagrams, in which
users drag-and-drop mashup components (visualized as
boxes) and connect them to form a mashup. Examples
are Yahoo! Pipes (http://pipes.yahoo.com/pipes/), IBM
Mashup Center (http://www.ibm.com/software/info/
mashup-center), JOpera [53], JackBe Presto (http://www.
jackbe.com/enterprise-mashup/), Marmite [36], mashArt
[37], ResEval Mash [38], MyCocktail (http://www.ict-ro
mulus.eu/web/mycocktail), and MashableLogic (http://
www.mashablelogic.com/). One of the strengths of visual
languages is their ability to support more than one view
at the same time [54], e.g. showing both the design time
and run time environments in the same screen. However,
a recent study conducted by [22] has suggested that the
wiring paradigm that is widely used by mashup tools can
be difficult to understand by non-programmers.
�
 Textual domain-specific language (DSL): DSLs are small
languages targeted for solving certain problems in a
specific domain [55]. DSLs can also be used as an EUP
technique for reducing programming efforts [56].
Swashup [39] is a DSL for mashups, based on Ruby-
on-Rails. It simplifies invocation, integration and aggre-
gation of Web APIs and data sources. As an example of
a DSL having its own paradigm and syntax, the Web
Mashup Scripting Language (WMSL) is a scripting
language for mashup development and automatic
semantics and ontology creation [40]. Although these
DSLs help us to reduce programming efforts, they still
cannot be used by non-programmers due to the diffi-
culty of learning their syntax and vocabulary [16].
�
 What-You-See-Is-What-You-Get: WYSIWYG enables
users to create and modify a mashup on a graphical
user interface which is similar to the one that will
appear when the mashup runs. ServFace Builder [12],
DashMash [41], Omelette [42], CRUISE [43], and Roof-
Top [44] exemplify WYSIWYG mashup tools. They
provide a set of connectable configurable boxes whose
current visual positions in the design time are the same
as during the runtime. Since users always see the
resulting mashup, the whole development process is
streamlined. Another potential benefit is the increase of
the tool directness. Users place visual objects exactly in
the places where they are meant to be. However, the
application logic of a mashup such as data filtering and
conversion happens in the backend where is not visible
in the graphical user interface, and therefore, is not
directly accessible for modification using a pure
WYSIWYG tool.
�
 Form-based: In form-based interaction, users are asked
to fill out a form to create a new or change the behavior
of an existing object. FeedRinse (http://feedrinse.com/)
provides a form-based mechanism to create data mash-
ups by filtering and aggregating Web feeds. Filling out
online forms has nowadays become an ordinary task
for end-users on the Web. This can be interpreted as a
proof for “naturalness” of form-based tools [57]. Form-
based tools cannot handle complex composition pat-
terns [58] such as the ones used for mashups.
�
 Programming by example modification: Another power-
ful technique to remove the burden of programming is to
let end-users modify and change the behavior of existing
examples, instead of programming from scratch [59].
d.mix [45] allows users to sample elements of a Website,
and then generates the corresponding source code pro-
ducing the selected elements. These source codes are
stored in a repository, where they can be discovered and
edited by others. Provided that adequate mashup exam-
ples are available, in most cases the modification of a
mashup example or the customization of a predefined
mashup template requires a small effort. Still, searching
for appropriate examples as a suitable starting point for
the work is a challenging task for non-programmers.
With the ever increasing number of Web APIs, providing
adequate mashup examples derived from all possible
combinations of these APIs is not feasible.
�
 Natural language programming: Natural Mashup [46]
incorporates natural language programming for com-
posing mashups on mobile devices. In the area of
personal information management, Belaunde and Has-
sen [46] presented Automate that uses a simplified CNL
for context-sensitive personal automation. Another
similar system is IFTTT (https://ifttt.com) which, even
though it is based on natural language, restricts the
user0s input using a structured visual editor. Also, IFTTT
only allows users to create mashups based on a specific
control-flow pattern (if this then that) using a prede-
fined list of components. Even though natural language
is considered as a natural way for humans to command
computers [60–62] it cannot be efficiently used for user
interface integration and design which are integral part
of mashup development [63].

The novelty of NaturalMash distinguishing it from the
above-mentioned tools lies in its novel hybrid end-user
programming technique, being an effective combination of
natural language programming (back-end development),
WYSIWYG, and PbD (front-end design). While natural
language programming is intuitive and can give a high
level of expressive power for developing the mashup back-
end, it cannot be effectively used for the front-end design.
On the other hand, WYSIWYG and PbD provide intuitive
direct manipulation facilities for the front-end design,
while they cannot provide adequate expressive power for
developing the back-end. The reason for selecting and
combining these techniques lies in the fact that they
augment one another0s strengths and compensate for
one another0s weaknesses. As it was seen (Sections 7.1
and 6), this has resulted in NaturalMash offering a high
level of expressive power, while it is still usable by
absolute non-professional users. To the best of our knowl-
edge, NaturalMash is the only mashup tool that has
developed such unique capabilities.

7.3. Natural language programming

Natural language programming has a long history and
has been recently successfully used in different application
domains. For instance, the system presented in [64] allows
users to use natural language to express formal rules defined
in the RoboCup coach language. System English (http://
www.system-english.com/) is also another example that
enables users to refer to MATLAB function calls using regular

http://pipes.yahoo.com/pipes/
http://www.ibm.com/software/info/mashup-center
http://www.ibm.com/software/info/mashup-center
http://www.jackbe.com/enterprise-mashup/
http://www.jackbe.com/enterprise-mashup/
http://www.ict-romulus.eu/web/mycocktail
http://www.ict-romulus.eu/web/mycocktail
http://www.mashablelogic.com/
http://www.mashablelogic.com/
http://feedrinse.com/
https://ifttt.com
http://www.system-english.com/
http://www.system-english.com/

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432430
sentences. In the area of personal information management,
Van Kleek [65] presented Automate that uses a simplified
CNL for context-sensitive personal automation. CoScripter
[66] is a natural language based script for automating Web
browsing activities. The idea of sloppy programming utilized
by CoScripter is closely related to the natural language
programming style of NaturalMash. More recently, Smart
et al. [67] proposed a controlled natural language interface to
simplify the development of semantic media wikis.

However, there are a number of critical viewpoints on the
use of natural language programming as a replacement for
existing formal programming languages [68,69]. Many are
concerned with the so-called general-purpose nature of
natural programming languages. For example, METAFOR
[70] could transfer a natural-language description of a pro-
gram to the skeleton of the program rendered in one of the
supported general-purpose programming languages including
Python, Lisp and Java. In this case, the issues of ambiguity and
imprecision discussed in the literature become relevant.

To support our choice in favor of a natural language
approach, we argue that the NaturalMash CNL is not a
general-purpose language but a specific high level language
tuned specifically for the domain of mashup composition.
Additionally, NaturalMash is the first to support natural
language programming in a live fashion, fostered by means
of direct manipulation and immediate preview of the
mashup user interface through a WYSIWYG interface.
8. Discussion

From a technical perspective, one of the main tasks of
mashup tools is to hide the heterogeneity and complexity
of Web technologies behind an easy-to-understand
abstraction. From a user modeling perspective, the chal-
lenge lies in the broad diversity of user skills that need to
be targeted and in the large number of domains in which
mashups can be applied to. The evaluations presented in this
paper (iteration formative evaluations in Section 6 and com-
parative expressive power evaluation in Section 7.1) showed
that the design of NaturalMash has found a sweet spot within
this trade-off. In the following we enumerate a set of impor-
tant lessons learned from our experience with the design and
evaluation of NaturalMash. We believe that these lessons can
help addressing the mentioned trade-offs towards the design
of efficient and effective mashup tools letting non-professional
users create sophisticated mashups.
�
 Design at meta-level: Mashups can be built and used
in different domains of applications. These domains
range from daily utilities of Web users (i.e., consumer
market) to narrowly specialized domains and enter-
prise environments. It is important to identify the
application domain in which users are willing to and
have shown a clear need to develop mashups [47]. This
is a well known problem in EUD, as the importance of
task and domain specificity was already pointed out by
Nardi [13] in the context of end-user programming.
From the point of view of the tool designer, a closed
approach which narrowly targets a single application
domain may present some limitations. Application
domains usually change over time. This may result in
changes of the initial requirements and assumptions
based on which the mashup tool was designed. Also, a
mashup tool targeting a specific domain may not
perfectly fit into, or be easily transformed into, a tool
targeting another domain. Therefore, we advocate a
meta-design approach [71], whereby a generic mashup
meta-tool is designed and from it domain-specific
mashup tools can be derived by its users over time.
The meta-design elements in NaturalMash include

(i) selection of the available ingredients (components),
(ii) the look and naming of ingredients, and most

importantly
(iii) the language style used to describe them.
In the latter case, the labels associated with the ingredi-
ents used in the text field can be changed by users to
tailor the “language” of the tool to their domain.
�
 Support different levels of expressiveness: An effective
mashup tool should provide enough expressive power
to allow the creation of sophisticated mashups. On the
other hand, the usability of a system may be affected by
the degree of expressiveness it offers. To avoid this
issue, Mørch [72] proposes three levels of user tailoring
including customization, integration, and extension.
In the case of mashups, all these three levels are
relevant and thus should be supported by a mashup
tool. Customization means modifying an existing
mashup through parameterization or user interface
manipulation. Integration (discussed in Section 7.1) is
the process of creating new mashups and should be
allowed at all the levels of data, business logic, and
presentation tiers. Extension allows extending the
functionality of the mashup tool by developing new
ingredients.
In NaturalMash, customization is enabled through the
visual field. Integration is mainly supported by natural
language programming. The plan is also to enable
extension for professional users to create and add
ingredients to the tool library.
�
 Build an online community: Online communities are of
importance in boosting the ability of users to learn how
to use the tool through creating, sharing, and reusing
mashups, knowledge, and experience [13]. Crowdsour-
cing can also be applied in an online community to
persuade professional users to enrich the ingredients
library for non-professional users [73].
We still plan to investigate the mentioned impacts of
online communities in the context of mashup EUD.
More importantly, we are interested in in-the-wild
testing of our meta-design using an online community.

9. Conclusion

In this paper we presented NaturalMash, a “natural”
tool for end-user mashup development. NaturalMash is
based on a novel hybrid composition technique combining
a controlled natural language tuned for mashup develop-
ment with an interactive WYSIWYG and drag-and-drop

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432 431
interface allowing PbD and live execution preview and
modification of the resulting mashup user interface. The
design of NaturalMash has adopted an incremental, user-
driven approach in which iterative formative evaluations
inform the next steps to be taken to improve the usability
of the tool. The results of our formative evaluations helped
us to identify several usability problems and gather ideas
on how to address these problems. Also, the results
provided positive feedback about the tool design, demon-
strated its usability by non-professional users as well as its
high level of expressive power, compared with existing
mashup tools, to let users create useful and non-trivial
mashups.

For the next iteration, in the near future we plan to
(i)
 enable autocompletion of mashup compositions
based on semantic and syntactic matching to assist
non-programmers with limited algorithmic thinking
capabilities,
(ii)
 boost the use of Programming by Demonstration to
generate output in addition to behavior,
(iii)
 enhance the live execution feature by saving and
restoring the current state of all user interface widgets
across compilation cycles, and
(iv)
 propose and adopt a set of design guidelines for
enhancing the usability of the widgets.
We also plan to explore the following open research
directions. First, our intention is to target possible specific
domains of application for mashups, so that we can find
end users that may lack programming skills but have a
significant expertise in a given domain. This way, the next
user study can take advantage of the user0s motivation and
domain-relevant skills, as these play an important role in
EUD [71]. To this end, we are considering to port the tool
to use non-English languages. We are also interested in
applying end-user software engineering [74] in the realm
of mashups. For instance, end-user debugging [75], testing,
and versioning [76] are all very important open challenges
in end-user mashup development.
Acknowledgements

We are grateful for the support and the expertise of
Monica Landoni and Antonella De Angeli with the pre-
parations and the analysis of the formative evaluation
results. This work is partially supported by the Swiss
National Science Foundation with the SOSOA project
(SINERGIA grant nr. CRSI22 127386).

References

[1] T. O0Reilly, What is Web 2.0: design patterns and business models
for the next generation of software, Commun. Strateg. 20 (2007) 17.

[2] D. Benslimane, S. Dustdar, A. Sheth, Services mashups: the new
generation of web applications, IEEE Internet Comput. 12 (2008)
13–15.

[3] A. Jhingran, Enterprise information mashups: integrating informa-
tion, simply, in: Proceedings of the 32nd International Conference
on Very Large Data Bases, VLDB Endowment, pp. 3–4.

[4] C. Anderson, The Long tail: why the future of business is selling less
of more, Hyperion, 2008.
[5] M. Eisenstadt, Does elearning have to be so awful? (time to mashup
or shutup), in: Proceedings of the 7th IEEE International Conference
on Advanced Learning Technologies (ICALT), IEEE, pp. 6–10.

[6] C. Goble, R. Stevens, et al., State of the nation in data integration for
bioinformatics, J. Biomed. Inform. 41 (2008) 687–693.

[7] M.N. Kamel Boulos, S. Wheeler, The emerging web 2.0 social soft-
ware: an enabling suite of sociable technologies in health and health
care education1, Health Inf. Libr. J. 24 (2007) 2–23.

[8] A. Bellucci, A. Malizia, P. Diaz, I. Aedo, Framing the design space for
novel crisis-related mashups: the estorys example, in: Proceedings
of the 7th International ISCRAM Conference, 2010.

[9] H. Lieberman, F. Paternò, M. Klann, V. Wulf, End-user development:
an emerging paradigm, in: End User Development, Springer, 2006,
pp. 1–8.

[10] F. Casati, How end-user development will save composition tech-
nologies from their continuing failures, in: End-User Development,
Springer, 2011, pp. 4–6.

[11] S. Aghaee, M. Nowak, C. Pautasso, Reusable decision space for
mashup tool design, in: Proceedings of the 4th ACM SIGCHI
Symposium on Engineering Interactive Computing Systems, ACM,
pp. 211–220.

[12] T. Nestler, M. Feldmann, G. Hübsch, A. Preußner, U. Jugel, The
servface builder—a WYSIWYG approach for building service-based
applications, in: Web Engineering, Springer, 2010, pp. 498–501.

[13] B.A. Nardi, A Small Matter of Programming: Perspectives on End
User Computing, MIT Press, 1993.

[14] L.A. Miller, Natural language programming: styles, strategies, and
contrasts, IBM Syst. J. 20 (1981) 184–215.

[15] J. Rode, M.B. Rosson, Programming at runtime: requirements and
paradigms for nonprogrammer web application development, in:
Proceedings of the IEEE Symposium on Human-Centric Computing
Languages and Environments, 2003, pp. 23–30.

[16] A. Cypher, D.C. Halbert, Watch What I Do: Programming by
Demonstration, MIT Press, 1993.

[17] S. Aghaee, C. Pautasso, Live mashup tools: challenges and opportu-
nities, in: Proceedings of the 1st International Workshop on Live
Programming (LIVE) 2013.

[18] R. Mihalcea, H. Liu, H. Lieberman, NLP (natural language processing)
for NLP (natural language programming), in: Computational Lin-
guistics and Intelligent Text Processing, Springer, 2006, pp. 319–330.

[19] S. Casteleyn, F. Daniel, P. Dolog, M. Matera, Engineering Web
Applications, Springer Publishing Company Incorporated, 2009.

[20] S. Aghaee, C. Pautasso, A. De Angeli, Natural end-user development
of mashups, in: Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing (VL/HCC), 2013.

[21] S. Aghaee, C. Pautasso, End-user programming for web mashups:
open research challenges, in: Proceedings of the 11th International
Conference on Current Trends inWeb Engineering, 2012, pp. 347–351.

[22] A. Namoun, T. Nestler, A. De Angeli, Service composition for non-
programmers: prospects, problems, and design recommendations,
in: Proceedings of the 8th IEEE European Conference on Web
Services (ECOWS), IEEE, 2010, pp. 123–130.

[23] N. Collins, A. McLean, J. Rohrhuber, A. Ward, Live coding in laptop
performance, Org. Sound 8 (2003) 321–330.

[24] S.L. Tanimoto, VIVA: a visual language for image processing, J. Vis.
Lang. Comput. 1 (1990) 127–139.

[25] D.A. Norman, S.W. Draper, User Centered System Design: New
Perspectives on Human–Computer Interaction, L. Erlbaum Associ-
ates Inc., 1986.

[26] A. Repenning, A. Ioannidou, What makes end-user development
tick? 13 design guidelines, in: End User Development, Springer,
2006, pp. 51–85.

[27] G. Bergmann, I. Ráth, G. Varró, D. Varró, Change-driven model
transformations, Softw. Syst. Model. 11 (2012) 431–461.

[28] C. Pautasso, G. Alonso, The JOpera visual composition language,
J. Vis. Lang. Comput. 16 (2005) 119–152.

[29] A. Strunk, QoS-aware service composition: a survey, in: Proceedings
of the 8th IEEE European Conference on Web Services (ECOWS),
IEEE, pp. 67–74.

[30] P. Lubbers, B. Albers, Harnessing the power of HTML5 web sockets to
create scalable real-time applications presentation, Web2.0 Expo SF,
2010.

[31] K. Vredenburg, J.-Y. Mao, P.W. Smith, T. Carey, A survey of user-
centered design practice, in: Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems, 2002, pp. 471–478.

[32] G. Wang, S. Yang, Y. Han, Mashroom: end-user mashup program-
ming using nested tables, in: Proceedings of the 18th International
Conference on World Wide Web, ACM, 2009, pp. 861–870.

http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref1
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref1
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref1
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref2
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref2
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref2
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref6
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref6
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref7
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref7
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref7
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref13
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref13
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref14
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref14
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref16
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref16
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref19
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref19
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref23
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref23
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref24
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref24
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref27
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref27
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref28
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref28

S. Aghaee, C. Pautasso / Journal of Visual Languages and Computing 25 (2014) 414–432432
[33] R. Tuchinda, C.A. Knoblock, P. Szekely, Building mashups by demon-
stration, ACM Trans. Web (TWEB) 5 (2011) 16.

[34] R. Ennals, E. Brewer, M. Garofalakis, M. Shadle, P. Gandhi, Intel mash
maker: join the web, ACM SIGMOD Record 36 (2007) 27–33.

[35] J. Lin, J. Wong, J. Nichols, A. Cypher, T.A. Lau, End-user programming
of mashups with vegemite, in: Proceedings of the 14th International
Conference on Intelligent User Interfaces, ACM, 2009, pp. 97–106.

[36] J. Wong, J.I. Hong, Making mashups with marmite: towards end-
user programming for the web, in: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, ACM, 2007,
pp. 1435–1444.

[37] F. Daniel, F. Casati, B. Benatallah, M.-C. Shan, Hosted universal
composition: models, languages and infrastructure in mashart, in:
Conceptual Modeling-ER 2009, Springer, 2009, pp. 428–443.

[38] M. Imran, F. Kling, S. Soi, F. Daniel, F. Casati, M. Marchese, Reseval
mash: a mashup tool for advanced research evaluation, in: Proceed-
ings of the 21st International Conference Companion on World
Wide Web, ACM, 2012, pp. 361–364.

[39] E.M. Maximilien, H. Wilkinson, N. Desai, S. Tai, A domain-specific
language for web apiAPI and services mashups, in: Proceedings of
the International Conference on Service-Oriented Computing (ICSOC
2007), Springer, 2007, pp. 13–26.

[40] M. Sabbouh, J. Higginson, S. Semy, D. Gagne, Web mashup scripting
language, in: Proceedings of the 16th International Conference on
World Wide Web, ACM, pp. 1305–1306.

[41] C. Cappiello, M. Matera, M. Picozzi, G. Sprega, D. Barbagallo,
C. Francalanci, Dashmash: a mashup environment for end user
development, in: Web Engineering, Springer, 2011, pp. 152–166.

[42] O. Chudnovskyy, T. Nestler, M. Gaedke, F. Daniel, J.I. Fernández-
Villamor, V. Chepegin, J.A. Fornas, S. Wilson, C. Kögler, H. Chang,
End-user-oriented telco mashups: the omelette approach, in: Pro-
ceedings of the 21st International Conference Companion on World
Wide Web, ACM, 2012, pp. 235–238.

[43] S. Pietschmann, M. Voigt, A. Rümpel, K. Meißner, Cruise: composi-
tion of rich user interface services, in: Web Engineering, Springer,
2009, pp. 473–476.

[44] V. Hoyer, F. Gilles, T. Janner, K. Stanoevska-Slabeva, SAP research
rooftop marketplace: putting a face on service-oriented architec-
tures, in: Proceedings of the 2009 Congress on Services—I, IEEE,
pp. 107–114.

[45] B. Hartmann, L. Wu, K. Collins, S.R. Klemmer, Programming by a
sample: rapidly creating web applications with d.mix, in: Proceed-
ings of the 20th Annual ACM Symposium on User Interface Software
and Technology, ACM, 2007, pp. 241–250.

[46] M. Belaunde, S.B. Hassen, Service mashups using natural language
and context awareness: a pragmatic architectural design, in: Pro-
ceedings of the 15th IEEE International Enterprise Distributed
Object Computing Conference Workshops (EDOCW), IEEE, 2011,
pp. 404–411.

[47] F. Casati, F. Daniel, A.D. Angeli, M. Imran, S. Soi, C.R. Wilkinson,
M. Marchese, Developing mashup tools for end-users: on the
importance of the application domain, Int. J. Next Gener. Comput.
Perpetual Innov. 3 (2012).

[48] J.J. Hanson, Mashups: Strategies for the Modern Enterprise,
Addison-Wesley Professional, 2009.

[49] M. Schrenk, Webbots, spiders, and screen scrapers: a guide to
developing Internet agents with PHP/CURL, No Starch Press, 2012.

[50] D.D. Hoang, H.-y. Paik, B. Benatallah, An analysis of spreadsheet-
based services mashup, in: Proceedings of the 21st Australasian
Conference on Database Technologies, vol. 104, Australian Computer
Society, Inc., 2010, pp. 141–150.

[51] G. Little, T.A. Lau, A. Cypher, J. Lin, E.M. Haber, E. Kandogan, Koala:
capture, share, automate, personalize business processes on the
web, in: Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ACM, 2007, pp. 943–946.

[52] N.C. Shu, Visual Programming, Van Nostrand Reinhold Co., 1988.
[53] C. Pautasso, Composing restful services with JOpera, in: Software

Composition, Springer, 2009, pp. 142–159.
[54] B.A. Myers, Taxonomies of visual programming and program visua-
lization, J. Vis. Lang. Comput. 1 (1990) 97–123.

[55] A. Van Deursen, P. Klint, J. Visser, Domain-specific languages: an
annotated bibliography, ACM Sigplan Not. 35 (2000) 26–36.

[56] H. Prähofer, D. Hurnaus, H. Mössenböck, Building end-user program-
ming systems based on a domain-specific language, in: Proceedings of
the 6th OOPSLA Workshop on Domain-Specific Modeling (DSM), 2006,
p. 33.

[57] J.C. Thomas, J.D. Gould, A psychological study of query by example,
in: Proceedings of the National Computer Conference and Exposi-
tion, ACM, May 19–22, 1975, pp. 439–445.

[58] R. Jeffries, J. Rosenberg, Comparing a form-based and a language-
based user interface for instructing a mail program, ACM SIGCHI
Bull. 17 (1986) 261–266.

[59] G.M. Olson, S. Sheppard, E. Soloway, Empirical Studies of Program-
mers: Second Workshop, Ablex, 1987.

[60] C. Green, et al., A summary of the psi program synthesis system, in:
Proceedings of the 5th International Conference on Artificial Intelli-
gence, vol. 1, 1977, pp. 380–381.

[61] G.E. Heidorn, Automatic programming through natural language
dialogue: a survey, IBM J. Res. Dev. 20 (1976) 302–313.

[62] E. Kaufmann, A. Bernstein, How useful are natural language inter-
faces to the semantic web for casual end-users? in: The Semantic
Web, Springer, 2007, pp. 281–294.

[63] J. Yu, B. Benatallah, R. Saint-Paul, F. Casati, F. Daniel, M. Matera,
A framework for rapid integration of presentation components, in:
Proceedings of the 16th International Conference on World Wide
Web, ACM, pp. 923–932.

[64] R.J. Kate, Y.W. Wong, R.J. Mooney, Learning to transform natural to
formal languages, in: Proceedings of the National Conference on
Artificial Intelligence, vol. 20, Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999, p. 1062.

[65] M. Van Kleek, B. Moore, D.R. Karger, P. André, et al., Atomate it! end-
user context-sensitive automation using heterogeneous information
sources on the web, in: Proceedings of the 19th International
Conference on World Wide Web, ACM, 2010, pp. 951–960.

[66] G. Leshed, E.M. Haber, T. Matthews, T. Lau, CoScripter: automating &
sharing how-to knowledge in the enterprise, in: Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, ACM,
2008, pp. 1719–1728.

[67] P.R. Smart, J. Bao, D. Braines, N.R. Shadbolt, Development of a
controlled natural language interface for semantic mediawiki, in:
Controlled Natural Language, Springer, 2010, pp. 206–225.

[68] E.W. Dijkstra, On the foolishness of “natural language program-
ming”, in: Program Construction, Springer, 1979, pp. 51–53.

[69] S.R. Petrick, On natural language based computer systems, IBM J.
Res. Dev. 20 (1976) 314–325.

[70] H. Liu, H. Lieberman, Metafor: Visualizing stories as code, in:
Proceedings of the 10th International Conference on Intelligent User
Interfaces, ACM, 2005, pp. 305–307.

[71] G. Fischer, E. Giaccardi, Y. Ye, A.G. Sutcliffe, N. Mehandjiev, Meta-
design: a manifesto for end-user development, Commun. ACM 47
(2004) 33–37.

[72] A. Mørch, Three levels of end-user tailoring: customization, integra-
tion, and extension, Comput. Des. Context 20 (1997) 51–76.

[73] M. Nebeling, S. Leone, M.C. Norrie, Crowdsourced web engineering
and design, in: Web Engineering, Springer, 2012, pp. 31–45.

[74] A.J. Ko, R. Abraham, L. Beckwith, A. Blackwell, M. Burnett, M. Erwig,
C. Scaffidi, J. Lawrance, H. Lieberman, B. Myers, et al., The state of the
art in end-user software engineering, ACM Comput. Surv. (CSUR) 43
(2011) 21.

[75] J. Cao, K. Rector, T.H. Park, S.D. Fleming, M. Burnett, S. Wiedenbeck,
A debugging perspective on end-user mashup programming, in:
Proceedings of the IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), IEEE, 2010, pp. 149–156.

[76] S.K. Kuttal, A. Sarma, G. Rothermel, History repeats itself more easily
when you log it: versioning for mashups, in: Proceedings of the IEEE
Symposium on Visual Languages and Human-Centric Computing
(VL/HCC), IEEE, 2011, pp. 69–72.

http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref33
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref33
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref34
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref34
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref47
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref47
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref47
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref47
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref48
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref48
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref49
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref49
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref52
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref54
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref54
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref55
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref55
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref58
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref58
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref58
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref61
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref61
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref69
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref69
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref71
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref71
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref71
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref72
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref72
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref74
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref74
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref74
http://refhub.elsevier.com/S1045-926X(14)00002-0/sbref74

	End-User Development of Mashups with NaturalMash
	Introduction
	Design goals, requirements, and decisions
	NaturalMash controlled natural language
	Abstract mashup components
	CNL grammar

	NaturalMash composition environment
	Usage scenario

	Architecture
	Incremental change detector of mashup models
	Compilation and deployment
	Runtime

	Formative evaluation
	First iteration
	Second iteration
	Users
	Method
	Results
	Lessons learned

	Third iteration
	Users
	Method
	Results
	Lessons learned

	Related work
	Mashup composition expressive power
	Method
	Results and discussion

	End-user programming technique
	Natural language programming

	Discussion
	Conclusion
	Acknowledgements
	References

