
RESTalk Miner: Mining RESTful Conversations,
Pattern Discovery and Matching

Ana Ivanchikj, Ilija Gjorgjiev, and Cesare Pautasso

Software Institute, Faculty of Informatics, USI Lugano, Switzerland
ana.ivanchikj,ilija.gjorgjiev,cesare.pautasso@usi.ch

Abstract. REST has become the architectural style of choice for APIs,
where clients need to instantiate a potentially lengthy sequence of re-
quests to the server in order to achieve their goal, effectively leading to
a RESTful conversation between clients and servers. Mining the logs of
such RESTful conversations can facilitate knowledge sharing among API
designers regarding design best practices as well as API usage and op-
timization. In this demo paper, we present the RESTalk Miner, which
takes logs from RESTful services as an input and uses RESTalk, a do-
main specific language, to visualize them. It provides interactive coloring
to facilitate graph reading, as well as statistics to compare the relative
frequency of conversations performed by different clients. Furthermore,
it supports searching for predefined patterns as well as pattern discovery.

Keywords: REST APIs · RESTful Conversations · Mining · Pattern
Search · Visualization

1 Introduction

As the number of RESTful services is growing, with over 15’000 publicly available
REST APIs [5] in the ProgrammableWeb repository1 as of 2018, mining their
logs can bring to interesting insights regarding how different clients actually use
REST APIs. This can help developers detect unexpected usage patterns of their
APIs by comparing different clients’ conversations, or to pinpoint interactions
which are worth optimizing as they are being used by most of the clients. For
instance, if there is a sequence of several requests which are frequently followed,
the API designer might decide to provide in the first request a direct link of the
last request, thus avoiding the clients having to make the intermediary requests.
Bugs might also become evident, such as unauthorized access to some resources
or frequent error messages after a certain sequence of requests. Mining techniques
have been successfully applied in the area of business processes for almost two
decades, resulting in process discovery, conformance checking, prediction of de-
lays, process redesign recommendation etc. [2]. Similar to business processes,
the use of REST APIs also requires a particular sequence of interactions [3].
In this case they are HTTP request-response interactions between clients and

1 http://www.programmableweb.com



2 A. Ivanchikj et al.

servers with the goal of retrieving or modifying the state of one or more resources
managed by a service provider [14]. We call the set of all possible client-server
interactions, aimed at achieving a certain goal, a RESTful conversation [4, 8, 7].
As process mining builds on data mining and process model-driven approaches,
mining of RESTful services also requires a model-driven approach to RESTful
conversations. To that end, in [9] we have proposed RESTalk, a domain specific
language for modeling and visualization of RESTful conversations and we use a
simplified version of the same in the RESTalk Miner. Although different min-
ing tools with graph visualization already exist [1, 16, 15], their visualization is
not REST domain specific nor do they offer pattern searching or pattern dis-
covery functionalities. Patterns [10] represent a systematic form of knowledge
sharing as they establish a common vocabulary to describe recurring RESTful
conversations [11] which is becoming increasingly important in the API-driven
development [6]. Patterns can be used to pinpoint and discuss API design best
practices or the absence of the same.

2 RESTalk Miner

The input to RESTalk Miner2 is a log file from a given server containing log
entries of interactions with different clients, complying to the following format:

Date︷ ︸︸ ︷
DD/MM/Y Y Y Y

Time︷ ︸︸ ︷
HH : MM : SS

Client IP Address︷ ︸︸ ︷
3.171.112.202

Method︷ ︸︸ ︷
POST

URI︷︸︸︷
/job

Status Code︷︸︸︷
202

Additionally there is an optional input, i.e., a file which contains the URI tem-
plates derived from an Open API specification of the API. For instance, to ab-
stract the following URI /content/serial/ title /issn/03029743 this URI template
can be used /content/serial/ title /issn/:id. Such abstraction ensures that iden-
tical method calls to the same type of resource are visualized as one request.
The main default output of the RESTalk Miner is a simplified RESTalk graph
showing all the conversations different clients have initiated with the server. Al-
ternatively, the user can select to visualize only the conversations of clients of
interest. Most of the nodes in the graph take the form of a juxtaposed request-
response containing information about the HTTP method, URI, response status
code and the number of log entries in which this request/response pair has ap-
peared. If different log entries indicate that the server has used different responses
to the same request, the request and the responses are represented as separate
nodes with an exclusive gateway node in-between to emphasize the existence of
alternative responses. An exclusive gateway node is also used to show alternative
paths that clients have taken during their interactions with the server. A node
with a round form is used to mark the start and the end of a conversation of
a particular client, while edges depict the sequence flow between nodes. Based
on user’s preference, the graph can be flattened by abstracting from the URI

2 https://github.com/USI-INF-Software/RESTfulConversationMining



RESTalk Miner 3

information and showing only the methods that have been called and the re-
sponse status codes. For the RESTalk visualization, dagre-d3 library [12, 13] has
been used to render the internal data structure into an SVG DOM tree which is
displayed by the Web browser.

RESTalk Graph and Comparative Statistics Visualization Once the
above mentioned graph has been generated, the user can activate or deacti-
vate different interactive visualizations: node frequency coloring which colors
nodes from red to yellow depending on the number of log entries that contain the
particular request/response pair; edge frequency thickness which adjusts the
thickness of the edges based on how many clients follow the same path; edge
delay coloring which colors the edges from red to yellow depending on the
time difference between the nodes that the edge connects; edge probability
which shows a probability of an alternative path being taken after an exclusive
gateway; status coloring which colors responses based on their status codes;
conversation path coloring which colors in a unique color all the requests
made by the same client and in a mix of colors the nodes which are shared
between clients in case multiple clients are selected. The tool also provides the
user with pie chart visualization of statistical data regarding the analyzed clients
of the RESTful service. The number of nodes pie chart shows how many re-
quest/response nodes belong to each individual client as a percentage of the
total number of nodes, i.e., how lengthy each conversation is; the uniqueness
of nodes pie chart shows how many nodes are unique to just one client, how
many are shared between two, three clients etc. Clicking on a certain slice of the
pie colors in the same color in the graph the nodes it refers to; the shared nodes
pie chart shows the number of nodes shared between specific clients; while the
dynamic sharing pie chart uses the same computation as the shared nodes pie
charts, but only for the clients selected by the user.

Pattern Discovery, Matching and Visualization RESTalk Miner supports
two types of pattern searches. Searching for unknown patterns, i.e., pattern dis-
covery, and searching for known patterns, i.e., pattern matching. The pattern
discovery can help identify new API design approaches and best practices, while
the pattern matching can allow to search for patterns of interest. When search-
ing for unknown patterns the user specifies the number of request/response
nodes the pattern should contain and the minimal number of clients that must
have used that pattern. If patterns that match these criteria are identified, they
appear in a dropdown list and the user can decide to visualize them and/or save
them. Saved patterns can be used later as known patterns to be searched for
in other conversations. The user can also upload patterns she knows based on
her experience or best practices and search for them in the given conversation.
Such patterns need to be described in JSON with a log object describing the
conversation pattern to be matched. Each log entry has the same structure as
the logs described above, with the difference that any of the elements (Method,
Status Code, URI, etc.) can be substituted by a * symbol, meaning that any
value of that element will be considered a match when searching for the pattern.



4 A. Ivanchikj et al.

Fig. 1. Overlapping vs. unique parts of conversations



RESTalk Miner 5

Fig. 2. Pattern matching

URI values can also be used as placeholders, i.e., ensuring that the same
URI is used in different requests without precisely specifying the URI value. An
optional separator element in the pattern description allows for log entries not
to be direct successors. For instance, if we are searching for a pattern with two
log entries (POST /example/1, DELETE /example/1), if we use this separator
element in the pattern description (POST /example/1 ... DELETE /example/1),
an occurrence of POST /example/1 followed by PUT /example/1 followed by
DELETE /example/1 will also be considered a match. Such description of the
pattern we are searching for allows for greater expressiveness to match targeted
patterns.

3 Conclusion

A screencast of the main functionalities of RESTalk Miner is available on YouTube3.
Future work includes providing full support of the RESTalk constructs, such as
the hyperlink flow, which will require additional input collected in the logs. We
also plan to release the tool as a Web Application with user registration func-
tionality so that the user can save the mined RESTful conversations and the
discovered patterns.

References

1. Disco. https://fluxicon.com/disco/, Last accessed: 2018-08-20

2. van der Aalst, W.: Process Mining: Discovery, Conformance and Enhancement of
Business Processes. Springer (2011)

3 https://youtu.be/N94clNa5Mlg



6 A. Ivanchikj et al.

3. Van der Aalst, W.M., Song, M.: Mining social networks: Uncovering interaction
patterns in business processes. In: Proc. of BPM. pp. 244–260. Springer (2004)

4. Benatallah, B., Casati, F., et al.: Web service conversation modeling: A cornerstone
for e-business automation. Internet Computing, IEEE 8(1), 46–54 (2004)

5. Fielding, R.T.: Architectural Styles and the Design of Network-based Software
Architectures. Ph.D. thesis, University of California, Irvine (2000)

6. Goteti, H.: API Driven Development, Bridging the gap between
Providers and Consumers. Tech. rep., CA Technologies (2015),
http://rewrite.ca.com/us/articles/application-economy/apis-bridging-the-gap-
between-providers-and-consumers.html

7. Haupt, F., Leymann, F., Pautasso, C.: A conversation based approach for modeling
REST APIs. In: Proc. of the 12th WICSA 2015. Montreal, Canada (May 2015)

8. Hohpe, G.: Let’s have a conversation. Internet Computing, IEEE 11(3), 78–81
(2007)

9. Ivanchikj, A., Pautasso, C., Schreier, S.: Visual modeling of RESTful conversations
with RESTalk. Software & Systems Modeling 17(3), 1031–1051 (2018)

10. Meszaros, G., Doble, J.: A pattern language for pattern writing. Pattern languages
of program design 3, 529–574 (1998)

11. Pautasso, C., Ivanchikj, A., Schreier, S.: A pattern language for RESTful conver-
sations. In: Proc.EuroPLoP. p. 4. ACM (2016)

12. Pettitt, C.: Directed graph layout for javascript. https://github.com/dagrejs/dagre
(2012-2014)

13. Pettitt, C.: A d3-based renderer for dagre. https://github.com/dagrejs/dagre-d3
(2013)

14. Richardson, L., Amundsen, M., Ruby, S.: RESTful Web APIs. O’Reilly (2013)
15. Stroinski, A., et al.: RESTful web service mining: Simple algorithm supporting

resource-oriented systems. In: Proc. of ICWE. pp. 694–695. IEEE (2014)
16. Verbeek, H., Buijs, J., Van Dongen, B., van der Aalst, W.M.: Prom 6: The process

mining toolkit. Proc. of BPM Demonstration Track 615, 34–39 (2010)


